Skip to main content
Log in

Nonequilibrium versus equilibrium molecular dynamics for calculating the thermal conductivity of nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Both equilibrium and nonequilibrium molecular dynamics (EMD and NEMD, respectively) methods have been used to predict the thermal conductivity of nanofluids. However, there are considerable discrepancies among the results of these two methods. In this study, by estimating the effects of different mechanisms including the Brownian motion of nanoparticles, the micro-convection in the base fluid, the nanolayers around the nanoparticles, and the thermal boundary resistance at the surface of nanoparticle, we determine upper and lower physical limits for the thermal conductivity of a nanofluid with spherical nanoparticles. The prediction of the NEMD simulations is in the acceptable range, while the result of the EMD simulations is higher than the upper bound. Since the prediction of the EMD method is not physically justifiable, we conclude the inadequacy of the traditional EMD method in calculating the thermal conductivity of nanofluids. Consequently, we recommend the researchers to use a modified version of the EMD method or the NEMD method for new studies in this field. We also apply the NEMD method to investigate the effects of the shape of nanoparticles and the formation of percolation networks in enhancing the thermal conductivity of nanofluids. The interference of the effects of nanolayer and thermal boundary resistance on the thermal conductivity of nanofluids is a new phenomenon we introduce in this study.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of the current study are available from the corresponding author upon reasonable request.

Abbreviations

\(A\) :

Area (\({\text{m}}^{2}\))

\(d\) :

Diameter (Å)

\(E\) :

Specific energy (\({\text{J}}\,{\text{kg}}^{ - 1}\))

\(e\) :

Energy (\({\text{J}}\))

\(\varvec{F}\) :

Force vector (\({\text{N}}\))

\(\varvec{f}\) :

Force vector (\({\text{N}}\))

\(h^{0}\) :

Time-averaged partial enthalpy (\({\text{J}}\,{\text{kg}}^{ - 1}\))

\(i\) :

Summation index

\(\varvec{J}\) :

Heat or energy flux vector (\({\text{Wm}}^{ - 2}\))

\(j\) :

Summation index

\({\text{Kn}}\) :

Knudsen number

\(k\) :

Thermal conductivity (\({\text{W}}\,{\text{m}}^{ - 1} {\text{K}}^{ - 1}\))

\({\text{ke}}\) :

Kinetic energy (\({\text{J}}\))

\(k_{\text{B}}\) :

Boltzmann constant

\(L\) :

Length (\({\text{m}}\))

\(L_{\text{c}}\) :

Characteristic length

\(M\) :

Molar mass (\({\text{gr}}\,{\text{mol}}^{ - 1}\))

\(m\) :

Mass (\({\text{kg}}\)); summation index

\(N\) :

Number of atoms; number of timesteps

\(N_{\text{Avo}}\) :

Avogadro number

\(P\) :

Pressure (\({\text{atm}}\))

\({\text{pe}}\) :

Potential energy (\({\text{J}}\))

\(\dot{Q}\) :

Rate of heat transfer (\({\text{W}}\))

\(q\) :

Heat flux (\({\text{W}}\,{\text{m}}^{ - 2}\))

\(R_{\text{b}}\) :

Interfacial thermal resistance (\({\text{m}}^{2} \,{\text{K}}\,{\text{W}}^{ - 1}\))

\(\varvec{r}\) :

Radial distance vector (\({\text{m}}\))

\(T\) :

Temperature (\({\text{K}}\))

\(t\) :

Time (\({\text{s}}\))

\(U\) :

Potential energy (\({\text{kcal}}\,{\text{mol}}^{ - 1}\))

\(V\) :

Volume (\({\text{m}}^{3}\))

\(\varvec{v}\) :

Velocity vector (\({\text{m}}\,{\text{s}}^{ - 1}\))

\(\epsilon\) :

Lennard–Jones interaction strength (\({\text{kcal}}\,{\text{mol}}^{ - 1}\))

\(\sigma\) :

Lennard–Jones length scale (Å)

\(\delta\) :

Thickness (\({\text{nm}}\))

\(\lambda\) :

Mean free path (\({\text{nm}}\))

\(\rho\) :

Density (\({\text{kg}}\,{\text{m}}^{ - 3}\))

\(\phi\) :

Volume fraction

\({\text{Ar}}\) :

Argon

\({\text{BF}}\) :

Base fluid

\({\text{Cu}}\) :

Copper

D:

Diameter direction

e:

Energy flux

\({\text{eff}}\) :

Effective

\({\text{ext}}\) :

External

h:

Enthalpy

L:

Length direction

\({\text{m}}\) :

Matrix index

NF:

Nanofluid

NL:

Nanolayer

NP:

Nanoparticle

q:

Heat

TOT:

Total

α:

Species

References

  1. Choi SUSUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition. 1995; vol, 66, pp. 99–105.

  2. Yang L, Hu Y. Toward TiO2 nanofluids—part 1: preparation and properties. Nanoscale Res Lett. 2017;12:1–21.

    Google Scholar 

  3. Prasher R, Bhattacharya P, Phelan PE. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett. 2005;94:3–6.

    Google Scholar 

  4. Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanoparticle Res. 2005;6:577–88.

    Google Scholar 

  5. Feng Y, Kleinstreuer C. Thermal nanofluid property model with application to nanofluid flow in a parallel disk system—part ii : nanofluid flow between parallel disks. J Heat Transf. 2015;134:1–9.

    Google Scholar 

  6. Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett. 2006;89:143119.

    Google Scholar 

  7. Leong KC, Yang C, Murshed SMS. A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanoparticle Res. 2006;8:245–54.

    CAS  Google Scholar 

  8. Zhou XF, Gao L. Thermal conductivity of nanofluids: effects of graded nanolayers and mutual interaction. J Appl Phys. 2008;103:1–6.

    Google Scholar 

  9. Tso CY, Fu SC, Chao CYH. A semi-Analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness. Int J Heat Mass Transf. 2014;70:202–14.

    Google Scholar 

  10. Xie H, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf. 2005;48:2926–32.

    CAS  Google Scholar 

  11. Jiang H, Li H, Xu Q, Shi L, Jiang H, Li H, et al. Effective thermal conductivity of nanofluids considering interfacial Effective thermal conductivity of nanofluids considering interfacial nano-shells. Mater Chem Phys. 2014;148:195–200.

    CAS  Google Scholar 

  12. Feng Y, Yu B, Xu P, Zou M. The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys. 2007;40:3164–71.

    CAS  Google Scholar 

  13. Xu Z, Kleinstreuer C. Concentration photovoltaic-thermal energy co-generation system using nanofluids for cooling and heating. Energy Convers Manag. 2014;87:504–12.

    Google Scholar 

  14. Liang Z, Tsai HL. Thermal conductivity of interfacial layers in nanofluids. Phys Rev E. 2011;83:041602.

    Google Scholar 

  15. Naguib N, Ye H, Gogotsi Y, Yazicioglu AG, Megaridis CM, Yoshimura M. Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett. 2004;4:2237–43.

    CAS  Google Scholar 

  16. Liu C, Li Z. On the validity of the Navier–Stokes equations for nanoscale liquid flows: the role of channel size. AIP Adv. 2011;1:1–10.

    Google Scholar 

  17. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf. 2008;51:1431–8.

    CAS  Google Scholar 

  18. Vladkov M, Barrat JL. Modeling transient absorption and thermal conductivity in a simple nanofluid. Nano Lett. 2006;6:1224–9.

    CAS  PubMed  Google Scholar 

  19. Buongiorno J, Venerus DC, Prabhat N, Mckrell T, Townsend J, Christianson R, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:1–14.

    Google Scholar 

  20. Özerinç S, Kakaç S, YazIcIoǧlu AG. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluidics. 2010;8:145–70.

    Google Scholar 

  21. Sarkar S, Selvam RP. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. J Appl Phys. 2007;102:1–7.

    Google Scholar 

  22. Teng K-L, Hsiao P, Hung S-W, Chieng C-C, Liu M, Lu M-C. Enhanced thermal conductivity of nanofluids diagnosis by molecular dynamics simulations. J Nanosci Nanotechnol. 2007;8:3710–8.

    Google Scholar 

  23. Jia T, Zhang Y, Ma HB, Chen JK, Chen HBMJK. Investigation of the characteristics of heat current in a nanofluid based on molecular dynamics simulation. Appl Phys A Mater Sci Process. 2012;108:537–44.

    CAS  Google Scholar 

  24. Lin YS, Hsiao PY, Chieng CC. Thermophysical characteristics of ethylene glycol-based copper nanofluids using nonequilibrium and equilibrium methods. Int J Therm Sci. 2012;62:56–60.

    CAS  Google Scholar 

  25. Cui W, Shen Z, Yang J, Wu S, Bai M. Influence of nanoparticle properties on the thermal conductivity of nanofluids by molecular dynamics simulation. RSC Adv. 2014;4:55580–9.

    CAS  Google Scholar 

  26. Topal I, Servantie J. Molecular dynamics study of the thermal conductivity in nanofluids. Chem Phys. 2019;516:147–51.

    CAS  Google Scholar 

  27. Sun C, Lu WQQ, Liu J, Bai B. Molecular dynamics simulation of nanofluid’s effective thermal conductivity in high-shear-rate Couette flow. Int J Heat Mass Transf. 2011;54:2560–7.

    CAS  Google Scholar 

  28. Babaei H, Keblinski P, Khodadadi JM. A proof for insignificant effect of Brownian motion-induced micro-convection on thermal conductivity of nanofluids by utilizing molecular dynamics simulations. J Appl Phys. 2013;113:1–5.

    Google Scholar 

  29. Kang H, Zhang Y, Yang M, Li L. Molecular dynamics simulation on effect of nanoparticle aggregation on transport properties of a nanofluid. J Nanotechnol Eng Med. 2012;3:021001.

    Google Scholar 

  30. Lee SL, Saidur R, Sabri MFMM, Min TK, Transfer NH, Group F. Molecular dynamic simulation on the thermal conductivity of nanofluids in aggregated and non-aggregated states. Numer Heat Transf Part A Appl. 2015;68:432–53.

    CAS  Google Scholar 

  31. Eapen J, Li J, Yip S. Mechanism of thermal transport in dilute nanocolloids. Phys Rev Lett. 2007;98:028302.

    PubMed  Google Scholar 

  32. Mori H. Statistical-mechanical theory of transport in fluids. Phys Rev. 1958;112:1829–42.

    Google Scholar 

  33. Vogelsang R, Hoheisel C, Paolini GV, Ciccotti G. Soret coefficient of isotopic Lennard–Jones mixtures and the Ar–Kr system as determined by equilibrium molecular-dynamics calculations. Phys Rev A. 1987;36:3964–74.

    CAS  Google Scholar 

  34. Sindzingre P, Ciccotti G, Massobrio C, Frenkel D. Partial enthalpies and related quantities in mixtures from computer simulation. Chem Phys Lett. 1987;136:35–41.

    CAS  Google Scholar 

  35. Heyes DM. Molecular dynamics simulations of liquid binary mixtures: partial properties of mixing and transport coefficients. J Chem Phys. 1992;96:2217–27.

    CAS  Google Scholar 

  36. Perronace A, Ciccotti G, Leroy F, Fuchs AH, Rousseau B. Soret coefficient for liquid argon-krypton mixtures via equilibrium and nonequilibrium molecular dynamics: a comparison with experiments. Phys Rev E. 2002;66:1–15.

    Google Scholar 

  37. Bertossa R, Grasselli F, Ercole L, Baroni S. Theory and numerical simulation of heat transport in multicomponent systems. Phys Rev Lett. 2019;122:255901.

    CAS  PubMed  Google Scholar 

  38. Fujiwara K, Daimo M, Ueki Y, Ohara T, Shibahara M. Thermal conductivity of nanofluids: a comparison of EMD and NEMD calculations. Int J Heat Mass Transf. 2019;144:118695.

    CAS  Google Scholar 

  39. Pomeau Y. Asymptotic behavior of the green-kubo integrands in binary mixtures. J Chem Phys. 1972;57:2800–10.

    CAS  Google Scholar 

  40. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 2019;117:1–19.

    Google Scholar 

  41. Haynes WM. CRC handbook of chemistry and physics. 95th ed. Boca Raton: CRC Press; 2014.

    Google Scholar 

  42. Kang H, Zhang Y, Yang M. Molecular dynamics simulation of thermal conductivity of Cu–Ar nanofluid using EAM potential for Cu–Cu interactions. Appl Phys A Mater. 2011;103:1001–8.

    CAS  Google Scholar 

  43. Essajai R, Mzerd A, Hassanain N, Qjani M. Thermal conductivity enhancement of nanofluids composed of rod-shaped gold nanoparticles: insights from molecular dynamics. J Mol Liq. 2019;293:111494.

    CAS  Google Scholar 

  44. Evans W, Fish J, Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett. 2006;88:93116.

    Google Scholar 

  45. Wirnsberger P, Frenkel D, Dellago C. An enhanced version of the heat exchange algorithm with excellent energy conservation properties. J Chem Phys. 2015;143:1–8.

    Google Scholar 

  46. Babaei H, Keblinski P, Khodadadi JMJM. Equilibrium molecular dynamics determination of thermal conductivity for multi-component systems. J Appl Phys. 2012;054310:1–5.

    Google Scholar 

  47. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticle Res. 2003;5:167–71.

    CAS  Google Scholar 

  48. Hasselman DPH, Johnson LF. Effective thermal conductivity of composites with interfacial thermal properties. J Compos Mater. 1987;21:508–15.

    Google Scholar 

  49. Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–63.

    CAS  Google Scholar 

  50. Eapen J, Williams WC, Buongiorno J, Hu LW, Yip S, Rusconi R, et al. Mean-field versus microconvection effects in nanofluid thermal conduction. Phys Rev Lett. 2007;99:095901.

    PubMed  Google Scholar 

  51. Eapen J, Li J, Yip S. Beyond the Maxwell limit: thermal conduction in nanofluids with percolating fluid structures. Phys Rev E. 2007;76:1–4.

    Google Scholar 

  52. Yu C-J, Richter A, Datta A, Durbin M, Dutta P. Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Phys B Condens Matter. 2000;283:27–31.

    CAS  Google Scholar 

  53. Turanov AN, Tolmachev YV. Heat- and mass-transport in aqueous silica nanofluids. Heat Mass Transf. 2009;45:1583–8.

    CAS  Google Scholar 

  54. Gerardi C, Cory D, Buongiorno J, Hu LW, McKrell T. Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Appl Phys Lett. 2009;95:2009–12.

    Google Scholar 

  55. Machrafi H, Lebon G. Effective thermal conductivity of spherical particulate nanocomposites: comparison with theoretical models, Monte Carlo simulations and experiments. Int J Nanosci. 2014;13:1450022.

    CAS  Google Scholar 

  56. Kittel C. Introduction to Solid State Physics. New York, NY: Wiley Sons; 2004.

    Google Scholar 

  57. Gupta RP, Sharma PK, Pal S. Temperature variation of the Grüneisen parameter of copper. Phys status solidi. 1966;18:119–24.

    CAS  Google Scholar 

  58. Madhusudana CV. Thermal contact conductance. New York: Springer; 1996.

    Google Scholar 

  59. Shenogin S, Xue L, Ozisik R, Keblinski P, Cahill DG. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys. 2004;95:8136–44.

    CAS  Google Scholar 

  60. Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, et al. Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2003;2:731–4.

    CAS  PubMed  Google Scholar 

  61. Incropera FP. Introduction to heat transfer. Hoboken: Wiley; 2007.

    Google Scholar 

  62. Cui W, Shen Z, Yang J, Wu S. Effect of chaotic movements of nanoparticles for nanofluid heat transfer augmentation by molecular dynamics simulation. Appl Therm Eng. 2014;76:261–71.

    Google Scholar 

  63. Vo TQ, Kim BH. Interface thermal resistance between liquid water and various metallic surfaces. Int J Precis Eng Manuf. 2015;16:1341–6.

    Google Scholar 

  64. https://lammps.sandia.gov/doc/fix_addtorque.html.

  65. Essajai R, Tabtab I, Mzerd A, Mounkachi O, Hassanain N, Qjani M. Molecular dynamics study of thermal properties of nanofluids composed of one-dimensional (1-D) network of interconnected gold nanoparticles. Results Phys. 2019;15:102576.

    Google Scholar 

  66. Nan CW, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81:6692–9.

    CAS  Google Scholar 

  67. Qi W. Nanoscopic thermodynamics. Acc Chem Res. 2016;49:1587–95.

    CAS  PubMed  Google Scholar 

  68. Essajai R, Rachadi A, Feddi E, Hassanain N. MD simulation-based study on the thermodynamic, structural and liquid properties of gold nanostructures. Mater Chem Phys. 2018;218:116–21.

    CAS  Google Scholar 

  69. Tsuzuki H, Branicio PS, Rino JP. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun. 2007;177:518–23.

    CAS  Google Scholar 

  70. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.

    CAS  Google Scholar 

  71. Patel HE, Das SK, Sundararajan T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83:2931–3.

    CAS  Google Scholar 

  72. Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006;6:1529–34.

    CAS  PubMed  Google Scholar 

  73. Eapen J, Rusconi R, Piazza R, Yip S. The classical nature of thermal conduction in nanofluids. J Heat Transf. 2010;132:102402.

    Google Scholar 

  74. Wang R, Qian S, Zhang Z. Investigation of the aggregation morphology of nanoparticle on the thermal conductivity of nanofluid by molecular dynamics simulations. Int J Heat Mass Transf. 2018;127:1138–46.

    CAS  Google Scholar 

Download references

Funding

The authors are grateful to Shiraz University for the computational resources and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Akbar Golneshan or Samad Sabbaghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejatolahi, M., Golneshan, A.A., Kamali, R. et al. Nonequilibrium versus equilibrium molecular dynamics for calculating the thermal conductivity of nanofluids. J Therm Anal Calorim 144, 1467–1481 (2021). https://doi.org/10.1007/s10973-020-09595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09595-x

Keywords

Navigation