Skip to main content
Log in

Effect of microcrystalline and microfibrillated cellulose on the evolution of hydration of cement pastes by thermogravimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The interest in the use of cellulose fibers of increasingly smaller sizes in cementitious materials has increased in recent years. This paper brings new contributions in this field showing from respective paste thermal analysis data, how microcrystalline cellulose (MCC) and microfibrillated cellulose (MFC) affect differently the formation of Class G cement pastes hydration products from early (2 h) to later hydration ages (672 h). Pastes containing 0, 0.25 and 0.5% of cellulose per cement mass and a water/cement mass ratio of 0.45 were cured at 23 °C, and the TG/DTG tests were carried out after 2, 6, 12, 24, 168 and 672 h. The results show that the pastes with MCC and MFC additions presented higher total combined water content than the reference paste, especially after 24 h of hydration. However, this is strongly related to the quantity of water adsorbed by different celluloses and their concentrations in the mixture. Comparing cellulose pastes, MFC pastes showed lower total combined water up to 28 days, attributed to the fiber’s microfibrillar form. No higher amount of calcium hydroxide was formed in the presence of cellulose, but it was more crystalline than that obtained in the reference. Other hydrated phases (dehydration from 200 to 400 °C) are differently affected by the presence of the celluloses, the highest formation occurring for 0.25% MCC paste. This behavior was attributed to an additional cure of these mixtures related to morphological characteristics and water retention capacity of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ardanuy M, Claramunt J, Toledo Filho RD. Cellulosic fiber reinforced cement-based composites: a review of recent research. Constr Build Mater. 2015;79:115–28.

    Google Scholar 

  2. Ramesh M, Palanikumar K, Hemachandra RK. Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sust Energ Rev. 2017;79:558–84.

    Google Scholar 

  3. Mercedes L, Gil L, Bernat-Maso E. Mechanical performance of vegetal fabric reinforced cementitious matrix (FRCM) composites. Constr Build Mater. 2018;175:161–73.

    CAS  Google Scholar 

  4. Ardanuy M, Claramunt J, Ventura H, Manich AM. Effect of water treatment on the fiber—matrix bonding and durability of cellulose fiber cement composites. J Biobased Mater Bioenergy. 2015;9:486–92.

    CAS  Google Scholar 

  5. Onuaguluchi O, Banthia N. Plant-based natural fibre reinforced cement composites: a review. Cem Concr Compos. 2016;68:96–108.

    CAS  Google Scholar 

  6. Toledo Filho RD, Scrivener K, England GL, Ghavami K. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cem Concr Compos. 2000;22:127–43.

    CAS  Google Scholar 

  7. Wei J, Meyer C. Degradation mechanisms of natural fiber in the matrix of cement composites. Cem Concr Res. 2015;73:1–16.

    CAS  Google Scholar 

  8. Knill CJ, Kennedy JF. Degradation of cellulose under alkaline conditions. Carbohyd Polym. 2003;51:281–300.

    CAS  Google Scholar 

  9. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, et al. Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci. 2010;45:1–33.

    CAS  Google Scholar 

  10. Correia VC. Produção de celulose nanofibrilada a partir de polpa organossolve de bambu para nanoreforço de compósitos cimentícios. PhD Thesis. University of São Paulo; 2015.

  11. Onuaguluchi O, Panesar DK, Sain M. Properties of nanofibre reinforced cement composites. Constr Build Mater. 2014;63:119–24.

    Google Scholar 

  12. Mejdoub R, Hammi H, Sun JJ, Khitouni M, Boufi S. Nanofibrillated cellulose as nanoreinforcement in portland cement: thermal, mechanical and microstructural properties. J Compos Mater. 2017;51:2491–503.

    CAS  Google Scholar 

  13. Lavoine N, Desloges I, Dufresne A, Lavoine N, Desloges I, Dufresne A, et al. Microfibrillated cellulose—its barrier properties and applications in cellulosic materias: a review. Carbohydr Polym. 2012;90:735–64.

    PubMed  CAS  Google Scholar 

  14. Cao Y, Zavaterri P, Youngblood J, Moon R, Weiss J. The influence of cellulose nanocrystal additions on the performance of cement paste. Cem Concr Compos. 2015;56:73–83.

    CAS  Google Scholar 

  15. Flores J, Kamali M, Ghahremaninezhad A. An investigation into the properties and microstructure of cement mixtures modified with cellulose nanocrystal. Materials (Basel). 2017;10:1–16.

    Google Scholar 

  16. Fu T, Montes F, Suraneni P, Youngblood J, Weiss J. The influence of cellulose nanocrystals on the hydration and flexural strength of Portland cement pastes. Polymers (Basel). 2017;9:1–16.

    Google Scholar 

  17. Hoyos CG, Cristia E, Vázquez A. Effect of cellulose microcrystalline particles on properties of cement based composites. Mater Des. 2013;51:810–8.

    Google Scholar 

  18. Parveen S, Rana S, Fangueiro R, Paiva MC. A novel approach of developing micro crystalline cellulose reinforced cementitious composites with enhanced microstructure and mechanical performance. Cem Concr Compos. 2017;78:146–61.

    CAS  Google Scholar 

  19. Parveen S, Rana S, Ferreira S, Filho A, Fangueiro R. Ultrasonic dispersion of micro crystalline cellulose for developing cementitious composites with excellent strength and stiffness. Ind Crop Prod. 2018;122:156–65.

    CAS  Google Scholar 

  20. Neves Junior A, Ferreira SR, Toledo Filho RD, Fairbairn EMR, Dweck J. Effect of early age curing carbonation on the mechanical properties and durability of high initial strength Portland cement and lime-pozolan composites reinforced with long sisal fibres. Compos B Eng. 2019;163:351–62.

    CAS  Google Scholar 

  21. Lago FR, Gonçalves JP, Dweck J, Cunha ALC. Evaluation of influence of salt in the cement hydration to oil wells. Mater Res. 2017;20(Suppl. 2):743–7.

    Google Scholar 

  22. Lemos MS, Cunha ALC, Dweck J. A study of cement type II hydration partially substituted by Brazilian spent cracking catalyst fines. J Therm Anal Calorim. 2017;130:585–93.

    CAS  Google Scholar 

  23. Dweck J, Melchert MBM, Cartledge FK, Leonardo RS, Toledo Filho RD. A comparative study of hydration kinetics of different cements by thermogravimetry on calcined mass basis. J Therm Anal Calorim. 2017;128:1335–42.

    CAS  Google Scholar 

  24. Dweck J, Buchler P, Coelho A, Cartledge F. Hydration of a portland cement blended with calcium carbonate. Thermochim Acta. 2000;346:105–13.

    CAS  Google Scholar 

  25. Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford Services Ltd; 1997. p. 102.

    Google Scholar 

  26. Das SK, Mitra A, Das Poddar PK. Thermal analysis of hydrated calcium aluminates. J Therm Anal. 1996;47:765–74.

    CAS  Google Scholar 

  27. Oliveira AS. Influência de aditivo cristalizante na autocicatrização de fissuras de pastas para cimentação para poços de petróleo. PhD Thesis. Federal University of Rio de Janeiro; 2019.

  28. Scrivener K, Snellings R, Lothenbach B. Cement chemistry. 1st ed. New York: CRC Press Taylor & Francis Group; 2016.

    Google Scholar 

  29. Rocha CAA, Chagas G, Toledo Filho RD. Use of thermal analysis to determine the hydration products of oil well cement pastes containing NaCl and KCl. J Therm Anal Calorim. 2015;122:1279–88.

    CAS  Google Scholar 

  30. Dweck J, Leonardo RS, Cartledge FK, Mendoza OA, Toledo Filho RD. Gypsum content determination in Portland cements by thermogravimetry. J Therm Anal Calorim. 2016;123:1053–62.

    Google Scholar 

  31. Goswami G, Mohapatra B, Panda JD. Gypsum dehydration during comminution and its effect on cement properties. J Am Ceram Soc. 1990;73(3):721–3.

    CAS  Google Scholar 

  32. Blair TC, Buckton G, Beezer AE, Bloomfield SF. The interaction of various types of microcrystalline cellulose and starch with water. Int J Pharm. 1990;63:251–7.

    CAS  Google Scholar 

  33. Ramiah MV. Thermogravimetric and differential thermal analysis. J Appl Polym Sci. 1970;14:1323–37.

    CAS  Google Scholar 

  34. Broido A, Nelson MA. Char yield on pyrolysis of cellulose. Combust Flame. 1975;24:263–8.

    CAS  Google Scholar 

  35. Shafizadeh F. Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis. 1982;3:283–305.

    CAS  Google Scholar 

  36. Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol. 2009;100:6496–504.

    PubMed  CAS  Google Scholar 

  37. Yeo JY, Lai B, Chin F, Tan JK, Loh YS. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J Energy Inst. 2017;92:1–11.

    Google Scholar 

  38. Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy. 2018;129:695–716.

    CAS  Google Scholar 

  39. Bahafid S. A multi-technique investigation of the effect of hydration temperature on the microstructure and mechanical properties of cement paste. PhD Thesis. Université Paris-Est; 2017.

  40. Chaipanich A, Nochaiya T. Thermal analysis and microstructure of Portland cement-fly ash-silica fume pastes. J Therm Anal Calorim. 2010;99(2):487–93.

    CAS  Google Scholar 

  41. Soriano L, Tashima MM, Bonilla M, Payá J, Monzó J, Borrachero MV. Use of high-resolution thermogravimetric analysis (HRTG) technique in spent FCC catalyst/Portland cement pastes. J Therm Anal Calorim. 2015;120:1511–7.

    CAS  Google Scholar 

  42. Gabrovšek R, Vuk T, Kaučič V. Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis. Acta Chim Slov. 2006;53:159–65.

    Google Scholar 

  43. Dweck J, FerreiradaSilva PF, Büchler PM, Cartledge FK. Study by thermogravimetry of the evolution of ettringite phase during type II Portland cement hydration. J Therm Anal Calorim. 2002;69:179–86.

    CAS  Google Scholar 

  44. Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ. Densification of C–S–H measured by 1H NMR relaxometry. J Phys Chem C. 2013;177:403–12.

    Google Scholar 

  45. Hoyos CG. El uso de fibras naturales de fique em sus distintos tamaños jerárquicos em la construcción. PhD Thesis. University of Buenos Aires; 2013.

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Moreover, the authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iolanda Scheibe de Siqueira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, I.S., Dweck, J. & Toledo Filho, R.D. Effect of microcrystalline and microfibrillated cellulose on the evolution of hydration of cement pastes by thermogravimetry. J Therm Anal Calorim 142, 1413–1428 (2020). https://doi.org/10.1007/s10973-020-09572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09572-4

Keywords

Navigation