Skip to main content
Log in

Hybrid nanoparticle swirl flow due to presence of turbulator within a tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The goal of the current attempt is to offer a new effective turbulator for increasing performance of a thermal system. Incorporating hybrid nanopowders makes thermal treatment better than pure base fluid. A boundary layer is destroyed with insertion of turbulator, and a greater pressure drop will be reported. As revolution of swirl flow device deteriorates, frictional resistance reduces and secondary flow becomes weaker. An inlet velocity can enhance the temperature gradient, but with the cost of a greater pressure loss. Nanoparticles can transport easier with a rise in Re and interaction with wall increases which disturbs the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liao L, Liu Z-H. Forced convective flow drag and heat transfer characteristics of carbon nanotube suspensions in a horizontal small tube. Heat Mass Transf. 2009;45(8):1129–36.

    Article  CAS  Google Scholar 

  2. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. Impact of MHD on hybrid nanomaterial free convective flow within a permeable region. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09008-8.

    Article  Google Scholar 

  3. Ma J, Xu Y, Li W, Zhao J, Zhang S, Basov S. Experimental investigation into the forced convective heat transfer of aqueous Fe3O4 nanofluids under transition region. J Nanopart. 2013;2013:5.

    Article  Google Scholar 

  4. Lee J, Mudawar I. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int J Heat Mass Transf. 2007;50(3):452–63.

    Article  CAS  Google Scholar 

  5. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger Review. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08634-6.

    Article  Google Scholar 

  6. Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf. 2005;48(6):1107–16.

    Article  CAS  Google Scholar 

  7. Kumar N, Puranik BP. Numerical study of convective heat transfer with nanofluids in turbulent flow using a Lagrangian–Eulerian approach. Appl Therm Eng. 2017;111:1674–81.

    Article  CAS  Google Scholar 

  8. Yang L, Du K. A comprehensive review on the natural, forced and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08987-y.

    Article  Google Scholar 

  9. Hung T-C, Yan W-M, Wang X-D, Chang C-Y. Heat transfer enhancement in microchannel heat sinks using nanofluids. Int J Heat Mass Transf. 2012;55(9):2559–700.

    Article  CAS  Google Scholar 

  10. Li Y, Shakeri F, Barzinjy AA, Dara RN, Shafee A, Tlili I. Nanomaterial thermal treatment along a permeable cylinder. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08706-7.

    Article  Google Scholar 

  11. Raza J, Mebarek-Oudina F, Chamkha A. Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscip Model Mater Struct. 2019;15:737–57.

    Article  CAS  Google Scholar 

  12. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7866-7.

    Article  Google Scholar 

  13. Mital M. Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels. Appl Therm Eng. 2013;50(1):429–36.

    Article  CAS  Google Scholar 

  14. Qin Y, Hiller JE. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014;85:389–99.

    Article  Google Scholar 

  15. Poongavanam GK, Ramalingam V. Effect of shot peening on enhancing the heat transfer performance of a tubular heat exchanger. Int J Therm Sci. 2019;139:1–14.

    Article  Google Scholar 

  16. Sheikholeslami M, Mehryan SA, Shafee A, Sheremet MA. Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq. 2019;277:388–96.

    Article  CAS  Google Scholar 

  17. Farshad SA, Sheikholeslami M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy. 2019;141:246–58.

    Article  CAS  Google Scholar 

  18. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moona S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:119–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houman Babazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafee, A., Sheikholeslami, M., Jafaryar, M. et al. Hybrid nanoparticle swirl flow due to presence of turbulator within a tube. J Therm Anal Calorim 144, 983–991 (2021). https://doi.org/10.1007/s10973-020-09570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09570-6

Keywords

Navigation