Skip to main content
Log in

Thermal analysis of the oxide–chloride systems GdCl3–Gd2O3 and GdCl3–KCl–Gd2O3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal analysis of the oxide–chloride systems GdCl3–Gd2O3 and GdCl3–KCl–Gd2O3 with the Gd2O3 content up to 0.09 mol fractions was studied in the temperature range 298–1173 K using two methods: differential scanning calorimetry and the method of cooling curves. The liquidus temperatures in these systems have been determined. The solubility of the oxide and the thermodynamic characteristics of the dissolution process were calculated. It was established experimentally that the dissolution of Gd2O3 proceeds by a chemical mechanism, with the formation of GdOCl oxychloride. The received data revealed the main regularities of Gd2O3 solubility in molten GdCl3–KCl–Gd2O3 systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McCarthy GJ, Rhyne JJ, Silber HB. The rare earth in modern science and technology, vol. 2. New York: Springer; 1980. https://doi.org/10.1007/978-1-4613-3054-7.

    Book  Google Scholar 

  2. McCarthy GJ, Rhyne JJ, Silber HB, editors. The rare earth in modern science and technology, vol. 2. New York: Plenum Press; 1980.

    Google Scholar 

  3. Hirota K. Electrochemical deoxidation of RE–O (RE = Gd, Tb, Dy, Er) solid solutions. J Alloy Compd. 1999;282:101–8.

    Article  CAS  Google Scholar 

  4. Claux B, Serp J, Fouletier J. Electrochemical reduction of cerium oxide into metal. Electrochim Acta. 2011;56:2771–80.

    Article  CAS  Google Scholar 

  5. Wang D. Electrochemical metallization of solid terbium oxide. Angew Chem Int Ed. 2006;45:2384–8.

    Article  CAS  Google Scholar 

  6. Baev AE, Novikov GI. Thermodynamic study of rare earth oxychlorides. Zh Neorg Khim. 1969;10(11):2457–64.

    Google Scholar 

  7. Tyen FI, Morozov IS. Interaction of rare earth oxychlorides with their chlorides in the melt. Zh Neorg Khim. 1969;14:2246–52.

    Google Scholar 

  8. Jinqiu YU, Lei CUI, Huaqiang HE, Shihong YAN, Yunsheng HU, Hao WU. Raman spectra of RE2O3 (RE = Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis. J Rare Earths. 2014;32:1–4. https://doi.org/10.1016/S1002-0721(14)60025-9.

    Article  CAS  Google Scholar 

  9. Korzun IV, Zakir’yanova ID, Nikolaeva EV. Mechanism and caloric effects of the thermal dehydration of GdCl3·6H2O crystalline hydrate. Russ Metall (Metall). 2018;8:722–7. https://doi.org/10.1134/s0036029518080104.

    Article  Google Scholar 

  10. Revzin G.E. Anhydrous chlorides of rare earth elements and scandium. [Bezvodnye hloridy redkozemelnyh elementov i skandia]. In: Methods of obtaining of chemical reagents and preparations [Metody polucheniya himicheskih reaktivov i preparatov]. M.: IREA. 1967. 129 p. [In Rus.].

  11. Barin I, Kubaschewski O. Thermochemical properties of inorganic substances. Berlin: Springer; 1977. https://doi.org/10.1002//bbpc.197800023.

    Book  Google Scholar 

  12. Barin I. Thermochemical data of pure substances. Weinheim: VCH Verlags Gesellschaf; 1989. https://doi.org/10.1002/ange.19901020738.

    Book  Google Scholar 

  13. Seifert HJ. Melting points of lanthanide trichlorides: an unsolved problem. J Therm Anal Calorim. 2005;82:575–80. https://doi.org/10.1007/s10973-005-6946-7.

    Article  CAS  Google Scholar 

  14. Rycerz L, Gaune-Escard M. Lanthanide (III) halides: thermodynamic properties and their correlation with crystal structure. J Alloy Compd. 2008;450:167–74. https://doi.org/10.1016/j.jallcom.2006.12.096.

    Article  CAS  Google Scholar 

  15. Konings RJM, Kovács A. Thermodynamic properties of the lanthanide (III) halides. Chapter 213. In: Gschneidner KA, Bunzli J-C, Pecharsky V, editors. Handbook on physics and chemistry of rare earths, vol. 33. Amsterdam: Elsevier; 2003.

    Google Scholar 

  16. Brown D. Halides of the lanthanides and actinides. London: Wiley; 1968.

    Google Scholar 

  17. Glushko VP, editor. Thermodynamic properties of individual substances, vol. 4. Moscow: Nauka; 1982.

    Google Scholar 

  18. Ma Zhisen, Sun Yimin, Yan Ding Yu, Wang Zhiyu Qiao, Ye Xinyu. Thermodynamic calculation of the GdCl3–ACl (A = Na, K, Rb, Cs) phase diagrams based on experimental data. Comput Coupling Phase Diagr Thermochem. 2006;30:88–94.

    Article  CAS  Google Scholar 

  19. Rycerz L. Practical remarks concerning phase diagrams determination on the basis of differential scanning calorimetry measurements. J Therm Anal Calorim. 2013;113:231–8. https://doi.org/10.1007/s10973-013-3097-0.

    Article  CAS  Google Scholar 

  20. I.D. Zakir’yanova, I.V. Korzun. Thermal stability of oxichlorides LnOCl (Ln = Gd, Yb). In: Book of abstracts XXII International conference on chemical thermodynamics in Russia (RCCT 2019) Saint Petersburg, Russia, June 19–23, 2019, p. 287.

  21. Nikolaeva EV, Zakirianova ID, Korzun IV, Bovet AL, Antonov BD. Interaction between barium oxide and barium containing chloride melt. Z Naturforsch. 2015;70(5):325–31. https://doi.org/10.1515/zna-2014-0370.

    Article  CAS  Google Scholar 

  22. Nikolaeva EV, Zakiryanova ID, Bovet AL, Korzun IV. On barium oxide solubility in barium-containing chloride melts. Z Naturforsch. 2016;71(8):731–4. https://doi.org/10.1515/zna-2016-0163.

    Article  CAS  Google Scholar 

  23. Castrillejo Y, Bermejo MR, Barrado E, Martinez AM, Diaz Arocas P. Solubilization of rare earth oxides in the eutectic LiCl–KCl mixture at 450 C and in the equimolar CaCl2–NaCl melt at 550 C. J Electroanal Chem. 2003;545:141–57. https://doi.org/10.1016/S0022-0728(03)00092-5.

    Article  CAS  Google Scholar 

  24. Hase Y, Dunstan P, Temperini M. Raman active normal vibrations of lanthanide oxychlorides. Spectrochim Acta Part A Mol Spectrosc. 1981;37:597–9. https://doi.org/10.1016/0584-8(81)80055-4.

    Article  Google Scholar 

Download references

Acknowledgements

The partial financial support of the Russian Foundation for Basic Research, Project № 18-03-00561a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraida V. Korzun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korzun, I.V., Nikolaeva, E.V. & Zakir’yanova, I.D. Thermal analysis of the oxide–chloride systems GdCl3–Gd2O3 and GdCl3–KCl–Gd2O3. J Therm Anal Calorim 144, 1343–1349 (2021). https://doi.org/10.1007/s10973-020-09558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09558-2

Keywords

Navigation