Skip to main content
Log in

Design and analysis of a hybrid concentrated photovoltaic thermal system integrated with an organic Rankine cycle for hydrogen production

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar is one of the most promising energy sources because of the abundance of solar radiation in certain parts of the world. One of the main limiting factors of using traditional photovoltaic cells is that they require a lot of space to generate a significant amount of power. The alternative method, the concentrated photovoltaic (CPV) module, does not utilize the infrared part of the spectrum; thus, the concentrated photovoltaic thermal (CPVT) module was developed. In this paper, the design of a CPVT system coupling with an organic Rankine cycle (ORC) is analyzed where the CPVT thermal receiver acts as a heat exchanger in ORC to generate additional electrical power. The generated power by hybrid CPVT–ORC system is converted to hydrogen by an electrolysis system to store power. The performance of hydrogen production system using an integrated CPVT–ORC power generation system is analytically evaluated, and the results of the modeling and analyses are presented, involving assessments of the influence of varying several design parameters on the rate of hydrogen production. The CPVT and ORC together produce up to 1152 W of electricity under 160 suns solar concentration. When all the electricity is supplied to an electrolyzer, 0.1587 kg of 99.99% pure hydrogen is produced and stored for future use in a fuel cell. The electrolyzer operates at up to 57% efficiency and has an average performance of 725.5 kWh kg−1. The results revealed that coupling ORC to the CPVT enables the system to improve the electrical power generation and consequently diurnal hydrogen production increases up to 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AEC:

Alkaline electrolyzer cell

CHP:

Combined heat and power

CPC:

Compound parabolic concentrator

CPV:

Concentrating photovoltaic

CPVT:

Concentrating photovoltaic thermal

HTF:

Heat transfer fluid

IR:

Infrared

LFR:

Linear Fresnel lens reflectors

MJSC:

Multijunction solar cell

ORC:

Organic Rankine cycle

PEC:

Photoelectrochemical

PEM:

Proton exchange membrane or polymer electrolyte membrane

PEMEC:

Proton exchange membrane or polymer electrolyte membrane electrolyzer cell

PTC:

Parabolic trough collector

PV:

Photovoltaic

SPD:

Solar parabolic dish

SPT:

Solar power tower

ST:

Steam turbine

TIP:

Turbine inlet pressure

TIT:

Turbine inlet temperature

TJC:

Triple junction cell

UV:

Ultraviolet

\(R_{\text{E}}\) :

Performance of the electrolyzer

\(A_{\text{E}}\) :

Electrolyzer cell area (m2)

\({\text{CP}}_{\text{H}}\) :

Specific heat capacity of hydrogen (J kg−1 K−1)

\(F\) :

Faraday constant (A s mol−1)

h :

Enthalpy (J kg−1)

\(I_{\text{E}}\) :

Electrolyzer current (A)

\(I_{{{\text{EC}},\hbox{max} }}\) :

Electrolyzer cell maximum current (A)

\(L_{\hbox{min} }\) :

Minimum electrical load requirement (W)

\(L_{\text{v}}\) :

Latent heat value (J kg−1)

\(M_{{{\text{H}}_{2} }}\) :

Molar mass of hydrogen (g mol−1)

\(\dot{m}_{{{\text{H}}_{2} ,{\text{T}}}}\) :

Hydrogen production mass flow rate from electrolyzer (kg h−1)

\(\dot{m}_{\text{r}}\) :

Refrigerant mass flow rate (kg s−1)

\(n\) :

Electrons requirement for splitting water

\(n_{\text{H}}\) :

Number of moles of hydrogen gas in storage tank (mol)

\(n_{\text{ta}}\) :

Instantaneous number of moles of hydrogen gas in storage tank (mol)

\(N_{\text{CM}}\) :

Number of solar cells in one panel

\(N_{\text{EC}}\) :

Number of cells of electrolyzer

\({\text{NP}}_{\text{CPV}}\) :

Number of CPV panels

\(\dot{n}_{{{\text{E}},{\text{H}}_{2} }}\) :

Hydrogen production flow rate from electrolyzer (mol s−1)

\(P_{\text{com}}\) :

Hydrogen compressor power (W)

\(P_{\text{CPV - ORC}}\) :

CPV-ORC power output (W)

\(P_{\text{E}}\) :

Pressure of hydrogen production from electrolyzer (Pa)

\(P_{\text{H}}\) :

Pressure of hydrogen storage tank (Pa)

\(P_{\text{ta}}\) :

Instantaneous pressure of hydrogen tank (Pa)

\(\dot{Q}_{\text{in}}\) :

Heat input (W)

\(\dot{Q}_{\text{out}}\) :

Heat output (W)

\(r\) :

Isentropic exponent of hydrogen

\(R\) :

Universal gas constant (J mol−1 K−1)

\(R_{\text{E}}\) :

Electrolyzer performance

\(T_{\text{com}}\) :

Hydrogen compressor temperature (K)

\(T_{\text{E}}\) :

Electrolyzer temperature (°C)

\(T_{\text{ta}}\) :

Temperature of hydrogen storage tank (K)

\(U_{\text{E}}\) :

Electrolyzer cell voltage (V)

\(U_{\text{rev}}\) :

Reversible voltage of electrolysis (V)

\(V_{{{\text{EC}},\hbox{max} }}\) :

Electrolyzer cell maximum voltage (V)

\(V_{\text{ta}}\) :

Volume of hydrogen storage tank (m3)

\(\dot{W}_{\text{P}}\) :

Pump work input (W)

\(\dot{W}_{\text{T}}\) :

Turbine work output (W)

\(\dot{W}_{{{\text{T}},{\text{a}}}}\) :

Actual power of the turbine (W)

\(\dot{W}_{{{\text{T}},{\text{s}}}}\) :

Isentropic power of the turbine (W)

\(Z_{\text{H}}\) :

Compressibility factor of hydrogen

\(\eta_{\text{CDC}}\) :

Efficiency of DC to DC converter (%)

\(\eta_{\text{com}}\) :

Efficiency of compressor (%)

\(\eta_{{{\text{DC}}/{\text{AC}}}}\) :

Efficiency of DC to AC converter (%)

\(\eta_{\text{EF}}\) :

Faraday efficiency of electrolyzer (%)

\(\eta_{\text{mppt}}\) :

Efficiency of maximum power point tracking device (%)

\(\eta_{\text{mP}}\) :

Mechanical efficiency of the pump (%)

\(\eta_{\text{sP}}\) :

Isentropic efficiency of the pump (%)

\(\eta_{\text{ORC}}\) :

Efficiency of organic Rankine cycle (%)

References

  1. Hosseini SE, Wahid MA, Aghili N. The scenario of greenhouse gases reduction in Malaysia. Renew Sustain Energy Rev. 2013;28:400–9.

    Google Scholar 

  2. Hosseini SE, Andwari AM, Wahid MA, Bagheri G. A review on green energy potentials in Iran. Renew Sustain Energy Rev. 2013;27:533–45.

    Google Scholar 

  3. Hosseini SE. Development of solar energy towards solar city Utopia. Energy Sour Part A Recovery Util Environ Eff. 2019;41:1–14.

    Google Scholar 

  4. Ammar AA, Sopian K, Alghoul MA, Elhub B, Elbreki AM. Performance study on photovoltaic/thermal solar-assisted heat pump system. J Therm Anal Calorim. 2019;136(1):79–87.

    CAS  Google Scholar 

  5. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWY. Solar cell efficiency tables (version 52). Prog Photovolt Res Appl. 2018;26(7):427–36.

    Google Scholar 

  6. Daneshazarian R, Cuce E, Cuce PM, Sher F. Concentrating photovoltaic thermal (CPVT) collectors and systems: theory, performance assessment and applications. Renew Sustain Energy Rev. 2018;81:473–92.

    Google Scholar 

  7. Lewis NS. Toward cost-effective solar energy use. Science (New York, N.Y.). 2007;315(5813):798–801.

    CAS  Google Scholar 

  8. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 45). Prog Photovolt Res Appl. 2015;23(1):1–9.

    Google Scholar 

  9. Burhan M, Oh SJ, Chua KJE, Ng KC. Solar to hydrogen: compact and cost effective CPV field for rooftop operation and hydrogen production. Appl Energy. 2017;194:255–66.

    CAS  Google Scholar 

  10. Renno C. Optimization of a concentrating photovoltaic thermal (CPV/T) system used for a domestic application. Appl Therm Eng. 2014;67(1–2):396–408.

    CAS  Google Scholar 

  11. Alva G, Liu L, Huang X, Fang G. Thermal energy storage materials and systems for solar energy applications. Renew Sustain Energy Rev. 2017;68:693–706.

    Google Scholar 

  12. Xu Q, Ji Y, Riggs B, Ollanik A, Farrar-Foley N, Ermer JH, Romanin V, Lynn P, Codd D, Escarra MD. A transmissive, spectrum-splitting concentrating photovoltaic module for hybrid photovoltaic-solar thermal energy conversion. Sol Energy. 2016;137:585–93.

    CAS  Google Scholar 

  13. Al-Musawi AIA, Taheri A, Farzanehnia A, Sardarabadi M, Passandideh-Fard M. Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems. J Therm Anal Calorim. 2019;137(2):623–36.

    CAS  Google Scholar 

  14. Zini G, Tartarini P. Hybrid systems for solar hydrogen: a selection of case-studies. Appl Therm Eng. 2009;29(13):2585–95.

    CAS  Google Scholar 

  15. Hosseini SE, Butler B, Abdul Wahid M. Hydrogen as a battery for a rooftop household solar power generation unit. Int J Hydrog Energy. 2019. https://doi.org/10.1016/j.ijhydene.2019.10.188.

    Article  Google Scholar 

  16. Bolton JR. Solar photoproduction of hydrogen: a review. Sol Energy. 1996;57:37–50.

    CAS  Google Scholar 

  17. Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T. Renewable power-to-gas: a technological and economic review. Renew Energy. 2016;85:1371–90.

    Google Scholar 

  18. Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol. 2006;38(5):569–82.

    CAS  Google Scholar 

  19. Züttel A. Hydrogen storage methods. Naturwissenschaften. 2004;91(4):157–72.

    PubMed  Google Scholar 

  20. Balat M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrog Energy. 2008;33(15):4013–29.

    CAS  Google Scholar 

  21. Singh S, Jain S, Venkateswaren PS, Tiwari AK, Nouni MR, Pandey JK, Goel S. Hydrogen: a sustainable fuel for future of the transport sector. Renew Sustain Energy Rev. 2015;51:623–33.

    CAS  Google Scholar 

  22. The Hydrogen economy: opportunities, costs, barriers, and R&D needs. Choice Reviews Online (2013).

  23. Crabtree GW, Dresselhaus MS. The hydrogen fuel alternative. MRS Bull. 2008;33(04):421–8.

    CAS  Google Scholar 

  24. Schalenbach M, Zeradjanin AR, Kasian O, Cherevko S, Mayrhofer KJJ. A perspective on low-temperature water electrolysis—challenges in alkaline and acidic technology. Int J Electrochem Sci. 2018;13:1173–226.

    CAS  Google Scholar 

  25. Coutanceau C, Baranton S, Audichon T. Hydrogen production from water electrolysis. In: Pollet B, editor. Hydrogen electrochemical production. Amsterdam: Elsevier; 2017.

    Google Scholar 

  26. Jain IP. Hydrogen the fuel for 21st century. Int J Hydrog Energy. 2009;34:7368–78.

    CAS  Google Scholar 

  27. Manoharan Y, Hosseini SE, Butler B, Alzhahrani H, Senior BTF, Ashuri T, Krohn J, Manoharan Y, Hosseini SE, Butler B, Alzhahrani H, Senior BTF, Ashuri T, Krohn J. Hydrogen fuel cell vehicles; current status and future prospect. Appl Sci. 2019;9(11):2296.

    CAS  Google Scholar 

  28. Islam T, Huda N, Abdullah AB, Saidur R. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends. Renew Sustain Energy Rev. 2018;91(April):987–1018.

    Google Scholar 

  29. Burhan M, Shahzad MW, Ng KC. Hydrogen at the rooftop: compact CPV-hydrogen system to convert sunlight to hydrogen. Appl Therm Eng. 2018;132:154–64.

    CAS  Google Scholar 

  30. Garcia-Saez I, Méndez J, Ortiz C, Loncar D, Becerra JA, Chacartegui R. Energy and economic assessment of solar organic rankine cycle for combined heat and power generation in residential applications. Renew Energy. 2019;140:461–76.

    Google Scholar 

  31. Senturk Acar M, Arslan O. Energy and exergy analysis of solar energy-integrated, geothermal energy-powered organic rankine cycle. J Therm Anal Calorim. 2019;137(2):659–66.

    CAS  Google Scholar 

  32. DiPippo R. Second law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics. 2004;33(5):565–86.

    CAS  Google Scholar 

  33. Hosseini SE, Barzegaravval H, Wahid MA, Ganjehkaviri A, Sies MM. Thermodynamic assessment of integrated biogas-based micro-power generation system. Energy Convers Manag. 2016;128:104–19.

    CAS  Google Scholar 

  34. Aghahosseini S, Dincer I. Comparative performance analysis of low-temperature organic rankine cycle (ORC) using pure and zeotropic working fluids. Appl Therm Eng. 2013;54(1):35–42.

    CAS  Google Scholar 

  35. Moro R, Pinamonti P, Reini M. ORC technology for waste-wood to energy conversion in the furniture manufacturing industry. Therm Sci. 2008;12(4):61–73.

    Google Scholar 

  36. Wang J, Dai Y, Gao L. Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry. Appl Energy. 2009;86(6):941–8.

    CAS  Google Scholar 

  37. Hajabdollahi H, Ganjehkaviri A, Mohd Jaafar MN. Thermo-economic optimization of RSORC (regenerative solar organic Rankine cycle) considering hourly analysis. Energy. 2015;87:369–80.

    CAS  Google Scholar 

  38. Bruno JC, López-Villada J, Letelier E, Romera S, Coronas A. Modelling and optimisation of solar organic rankine cycle engines for reverse osmosis desalination. Appl Therm Eng. 2008;28(17–18):2212–26.

    CAS  Google Scholar 

  39. Etemoglu AB. Thermodynamic evaluation of geothermal power generation systems in Turkey. Energy Sourc Part A Recovery Util Environ Eff. 2008;30(10):905–16.

    CAS  Google Scholar 

  40. Chen H, Goswami DY, Stefanakos EK. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew Sustain Energy Rev. 2010;14(9):3059–67.

    CAS  Google Scholar 

  41. Jing L, Gang P, Jie J. Optimization of low temperature solar thermal electric generation with organic Rankine cycle in different areas. Appl Energy. 2010;87(11):3355–65.

    CAS  Google Scholar 

  42. Pei G, Li J, Ji J. Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle. Appl Therm Eng. 2010;30(8–9):998–1004.

    Google Scholar 

  43. Wang M, Wang J, Zhao Y, Zhao P, Dai Y. Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors. Appl Therm Eng. 2013;50(1):816–25.

    CAS  Google Scholar 

  44. Quoilin S, Orosz M, Hemond H, Lemort V. Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Sol Energy. 2011;85(5):955–66.

    Google Scholar 

  45. Tchanche BF, Papadakis G, Lambrinos G, Frangoudakis A. Fluid selection for a low-temperature solar organic Rankine cycle. Appl Therm Eng. 2009;29(11–12):2468–76.

    CAS  Google Scholar 

  46. Rayegan R, Tao YX. A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs). Renew Energy. 2011;36(2):659–70.

    CAS  Google Scholar 

  47. Bao JJ, Zhao L, Zhang WZ. A novel auto-cascade low-temperature solar Rankine cycle system for power generation. Sol Energy. 2011;85(11):2710–9.

    CAS  Google Scholar 

  48. Chacartegui R, Munoz de Escalona J, Becerra JA, Fernández A, Sánchez D. Potential of ORC Systems to Retrofit CHP plants in wastewater treatment stations. J Sustain Dev Energy Water Environ Syst. 2013;1(4):352–74.

    Google Scholar 

  49. Burhan M, Shahzad MW, Ng KC. Concentrated photovoltaic (CPV): hydrogen design methodology and optimization. In: Eyvaz M, editor. Advances in hydrogen generation technologies. London: InTech; 2018.

    Google Scholar 

  50. Cotal H, Sherif R. Temperature dependence of the IV parameters from triple junction GaInP/InGaAs/Ge concentrator solar cells. In 2006 IEEE 4th world conference on photovoltaic energy conference; 2006. pp. 845–848.

  51. Ulleberg O. Stand-alone power systems for the future: optimal design, operation and control of solar-hydrogen energy systems. National technical reports library—NTIS, NTNU, Trondheim, Norvège, 1988.

  52. Pan Ching-Tsai, Juan Yu-Ling. A novel sensorless MPPT controller for a high-efficiency microscale wind power generation system. IEEE Trans Energy Convers. 2010;25(1):207–16.

    Google Scholar 

  53. Chiu H-J, Lin L-W. A high-efficiency soft-switched AC/DC converter with current-doubler synchronous rectification. IEEE Trans Ind Electron. 2005;52(3):709–18.

    Google Scholar 

  54. Ki S-K, Lu DD-C. Implementation of an efficient transformerless single-stage single-switch AC/DC converter. IEEE Trans Ind Electron. 2010;57(12):4095–105.

    Google Scholar 

  55. Wang K, Lin CY, Zhu L, Qu D, Lee FC, Lai JS, Bi-directional DC to DC converters for fuel cell systems. In: Power electronics in transportation (Cat. No.98TH8349), pp. 47–51.

  56. Nymand M, Andersen MAE. High-efficiency isolated boost DC–DC converter for high-power low-voltage fuel-cell applications. IEEE Trans Ind Electron. 2010;57(2):505–14.

    Google Scholar 

  57. Richardson L. How many peak sunlight hours do i need for solar? EnergySage (2019). https://news.energysage.com/many-sunlight-hours-need-calculating-peak-sun-hours/. Accessed: 22 Jun 2019.

  58. Robertson J, Riggs B, Islam K, Ji YV, Spitler CM, Gupta N, Krut D, Ermer J, Miller F, Codd D, Escarra M. Field testing of a spectrum-splitting transmissive concentrator photovoltaic module. Renew Energy. 2019;139:806–14.

    Google Scholar 

  59. Burhan M, Chua KJE, Ng KC. Sunlight to hydrogen conversion: Design optimization and energy management of concentrated photovoltaic (CPV-Hydrogen) system using micro genetic algorithm. Energy. 2016;99:115–28.

    CAS  Google Scholar 

  60. Khalil I, Pratt Q, Spitler C, Codd D. Modeling a thermoplate conical heat exchanger in a point focus solar thermal collector. Int J Heat Mass Transf. 2019;130:1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ehsan Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.E., Butler, B. Design and analysis of a hybrid concentrated photovoltaic thermal system integrated with an organic Rankine cycle for hydrogen production. J Therm Anal Calorim 144, 763–778 (2021). https://doi.org/10.1007/s10973-020-09556-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09556-4

Keywords

Navigation