Skip to main content
Log in

Analysis of nanomaterial flow among two circular tubes in the presence of magnetic force

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The selective drug delivery system could be an excellent alternative to fight cancer and pathogens, due to its minimized negative consequences. Radiofrequency hyperthermia treatments are an innovative method attracting attention recently, which is based on heat destruction of cancer cells, using nanofluids. However, for an optimized treatment approach, several factors including thermal conductivity of bio-nanofluid should be studied. Current article investigates the role of Lorentz force on nanomaterial stream between two cylinders which are circular. Non-homogeneous model is utilized for simulating nanomaterial, and Runge–Kutta technique was applied to resolve ordinary differential equations. Moreover, the influence of Brownian motion on the nano-powders feature was studied. The influence of various active terms, such as Hartmann amount, aspect ratio, Re, Eckert number, thermophoresis, Schmidt number, and Brownian terms, is analytically surveyed. Based on obtained results, the amount of velocity increases when Re increases, whereas it decreases as Lorentz force grows. Furthermore, the temperature gradient increases when the value of magnetic field grows; however, it declines as the other terms increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17(8):2950–62.

    CAS  PubMed  Google Scholar 

  2. Pastorin G, Wu W, Wieckowski S, et al. Double functionalization of carbon nanotubes for multimodal drug delivery. Chem Commun (Camb). 2006;11:1182–4. https://doi.org/10.1039/b516309a.

    Article  CAS  Google Scholar 

  3. Madni MA, Sarfraz M, Rehman M, Ahmad M, Naveed A, Ahmad S, Tahir N, Ijaz S, Al-Kassas R. Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci. 2014;17:401–26.

    PubMed  Google Scholar 

  4. Liu Y, Chen C. Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev. 2015;103:76–89.

    Google Scholar 

  5. Simao AMS, Bolean M, Cury TAC, Stabeli RG, Itri R, Ciancaglini P. Liposomal systems as carriers for bioactive compounds. Biophys Rev. 2015;7(4):391–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev. 2010;62:339–45.

    CAS  PubMed  Google Scholar 

  7. Shafee A, Sheikholeslami M, Jafaryar M, Babazadeh H. Irreversibility of hybrid nanoparticles within a pipe fitted with turbulator. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09248-8.

    Article  Google Scholar 

  8. Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–91.

    CAS  Google Scholar 

  9. Sheikholeslami M, Arabkoohsar A, Shafee A, Ismail KAR. Second law analysis of a porous structured enclosure with nano-enhanced phase change material and under magnetic force. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08979-y.

    Article  Google Scholar 

  10. Sheikholeslami M, Seyednezhad M. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int J Heat Mass Transf. 2017;114:1169–80.

    CAS  Google Scholar 

  11. Sheikholeslami M, Arabkoohsar A, Babazadeh H. Modeling of nanomaterial treatment through a porous space including magnetic forces. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08878-2.

    Article  Google Scholar 

  12. Sheikholeslami M, Rokni HB. Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Heat Mass Transf. 2017;114:517–26.

    CAS  Google Scholar 

  13. Sheikholeslami M, Gerdroodbary MB, Shafee A, Tlili I. Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08858-6.

    Article  Google Scholar 

  14. Sheikholeslami M, Sadoughi M. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int J Heat Mass Transf. 2017;113:106–14.

    CAS  Google Scholar 

  15. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on nanofluid thermal hydraulic performance of a tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08683-x.

    Article  Google Scholar 

  16. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger: review. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08634-6.

    Article  Google Scholar 

  17. Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08235-3.

    Article  Google Scholar 

  18. Sheikholeslami M, Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids. 2018. https://doi.org/10.1063/1.5012517.

    Article  Google Scholar 

  19. Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019;138:795–804. https://doi.org/10.1007/s10973-019-08156-1.

    Article  CAS  Google Scholar 

  20. Sheikholeslami M, Shamlooei M. Fe3O4–H2O nanofluid natural convection in presence of thermal radiation. Int J Hydrog Energy. 2017;42(9):5708–18.

    CAS  Google Scholar 

  21. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79(14):2252–4.

    CAS  Google Scholar 

  22. Cheng L. Nanofluid heat transfer technologies. Recent Patents Eng. 2009;3(1):1–7.

    CAS  Google Scholar 

  23. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7866-7.

    Article  Google Scholar 

  24. Rezaeianjouybari B, Sheikholeslami M, Shafee A, Babazadeh H. A novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: a combined analytical and experimental study. Chem Eng Sci. 2020. https://doi.org/10.1016/j.ces.2019.115465.

    Article  Google Scholar 

  25. Vo DD, Hedayat M, Ambreen T, Shehzad SA, Sheikholeslami M, Shafee A, Nguyen TK. Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium: CVFEM modeling. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08501-4.

    Article  Google Scholar 

  26. Sheikholeslami M, Bhatti MM. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf. 2017;111:1039–49.

    CAS  Google Scholar 

  27. Shafee A, Sheikholeslami M, Jafaryar M, Babazadeh H. Utilizing copper oxide nanoparticles for expedition of solidification within a storage system. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2019.112371.

    Article  Google Scholar 

  28. Aly AM, Raizah ZAS, Sheikholeslami M. Analysis of mixed convection in a sloshing porous cavity filled with a nanofluid using ISPH method. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08575-0.

    Article  Google Scholar 

  29. Sheikholeslami M, Bhatti MM. Active method for nanofluid heat transfer enhancement by means of EHD. Int J Heat Mass Transf. 2017;109:115–22.

    CAS  Google Scholar 

  30. Sheikholeslami M, Keshteli AN, Babazadeh H. Nanoparticles favorable effects on performance of thermal storage units. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2019.112329.

    Article  Google Scholar 

  31. Sheikholeslami M, Hayat T, Alsaedi A. MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf. 2016;96:513–24.

    CAS  Google Scholar 

  32. Nguyen TK, Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Mouli KVVC, Tlili I. Design of heat exchanger with combined turbulator. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08401-7.

    Article  Google Scholar 

  33. Sheikholeslami M, Hayat T, Alsaedi A. Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. Int J Heat Mass Transf. 2017;106:745–55.

    CAS  Google Scholar 

  34. Rabbi KMd, Sheikholeslami M, Karim A, Shafee A, Li Z, Tlili I. Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial. Phys A Stat Mech Appl Phys A. 2020;541:123520.

    CAS  Google Scholar 

  35. Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf. 2017;106:1261–9.

    CAS  Google Scholar 

  36. Li Z, Sheikholeslami M, Jafaryar M, Shafee A. Time dependent heat transfer simulation for NEPCM solidification inside a channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08140-9.

    Article  Google Scholar 

  37. Sheikholeslami M, Shehzad SA. Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf. 2017;109:82–92.

    CAS  Google Scholar 

  38. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135(1):305–23. https://doi.org/10.1007/s10973-018-7093-2.

    Article  CAS  Google Scholar 

  39. Sheikholeslami M, Rokni HB. Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf. 2017;107:288–99.

    CAS  Google Scholar 

  40. Szilágyi IM, Kállay-Menyhárd A, Šulcová P, Kristóf J, Pielichowski K, Šimon P. Recent advances in thermal analysis and calorimetry presented at the 1st Journal of Thermal Analysis and Calorimetry Conference and 6th V4 (Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference (2017). J Therm Anal Calorim. 2018;133:1–4.

    Google Scholar 

  41. Sheikholeslami M, Hayat T, Alsaedi A, Abelman S. Numerical analysis of EHD nanofluid force convective heat transfer considering electric field dependent viscosity. Int J Heat Mass Transf. 2017;108:2558–65.

    CAS  Google Scholar 

  42. Chein R, Huang G. Analysis of microchannel heat sink performance using nanofluids. Appl Therm Eng. 2005;25(17):3104–14.

    CAS  Google Scholar 

  43. Jian M-H, Tang H-W, Yang Y-T. Numerical simulation and optimization of nanofluids in a complex micro heat sink. Numer Heat Transf A Appl. 2017;71(3):341–59.

    CAS  Google Scholar 

  44. Sivakumar A, Alagumurthi N, Senthilvelan T. Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink. Heat Mass Transf. 2016;52(7):1265–74.

    CAS  Google Scholar 

  45. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105(1):73.

    Google Scholar 

  46. Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf. 2015;89:799–808.

    CAS  Google Scholar 

  47. Li F, Sheikholeslami M, Dara RN, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Numerical study for nanofluid behavior inside a storage finned enclosure involving melting process. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.111939.

    Article  Google Scholar 

  48. Lublóy É, Kopecskó K, Balázs GL, Szilágyi IM, Madarász J. Improved fire resistance by using slag cements. J Therm Anal Calorim. 2016;125(1):271–9.

    Google Scholar 

  49. Sheikholeslami M, Vajravelu K. Mohammad Mehdi Rashidi, Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf. 2016;92:339–48.

    CAS  Google Scholar 

  50. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. Impact of MHD on hybrid nanomaterial free convective flow within a permeable region. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09008-8.

    Article  Google Scholar 

  51. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of neural network for estimation of heat transfer treatment of Al2O3–H2O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.

    Google Scholar 

  52. Li Y, Aski FS, Barzinjy AA, Dara RN, Shafee A, Tlili I. Nanomaterial thermal treatment along a permeable cylinder. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08706-7.

    Article  Google Scholar 

  53. Sheikholeslami M, Rokni HB. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng. 2017;317:419–30.

    Google Scholar 

  54. Tlili I, Alkanhal TA, Othman M, Dara RN, Shafee A. Water management and desalination in KSA view 2030: case study of solar humidification and dehumidification system. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08700-z.

    Article  Google Scholar 

  55. Sheikholeslami M, Shehzad SA, Abbasi FM, Li Z. Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Comput Methods Appl Mech Eng. 2018;338:491–505.

    Google Scholar 

  56. Alrobaian AA, Alsagri AS, Ali JA, Hamad SM, Shafee A, Nguyen TK, Li Z. Investigation of convective nanomaterial flow and exergy drop considering CVFEM within a porous tank. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08564-3.

    Article  Google Scholar 

  57. Sheikholeslami M, Hayat T, Alsaedi A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int J Heat Mass Transf. 2017;115:981–91.

    CAS  Google Scholar 

  58. Manh TD, Nam ND, Abdulrahman GK, Shafee A, Shamlooei M, Babazadeh H, Jilani AK, Tlili I. Effect of radiative source term on the behavior of nanomaterial with considering Lorentz forces. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09077-9.

    Article  Google Scholar 

  59. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    CAS  Google Scholar 

  60. Qin Y, Zhang M, Mei G. A new simplified method for measuring the permeability characteristics of highly porous media. J Hydrol. 2018;562:725–32.

    Google Scholar 

  61. Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.

    Google Scholar 

  62. Sheikholeslami M, Sadoughi MK. Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    CAS  Google Scholar 

  63. Qin Y. Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 2015;96:86–94.

    Google Scholar 

  64. Ho CJ, Chung YN, Lai C-M. Thermal performance of Al2O3/water nanofluid in a natural circulation loop with a mini-channel heat sink and heat source. Energy Convers Manag. 2014;87:848–58.

    CAS  Google Scholar 

  65. Godley M, Pratap B, Tomar S, Tripathi A. Investigation of automobile radiator using nanofluid–CuO/water mixture as coolant. Int J Adv Res Sci Eng Technol. 2015;2(12):1136–45.

    Google Scholar 

  66. Rafatijo H, Thompson DL. General application of Tolman’s concept of activation energy. J Chem Phys. 2017;147:224111. https://doi.org/10.1063/1.5009751.

    Article  CAS  PubMed  Google Scholar 

  67. Rafatijo H, Monge-Palacios M, Thompson DL. Identifying collisions of various molecularities in molecular dynamics simulations. J Phys Chem A. 2019;123(6):1131–9. https://doi.org/10.1021/acs.jpca.8b11686.

    Article  CAS  PubMed  Google Scholar 

  68. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    CAS  Google Scholar 

  69. Gao W, Wang WF. The eccentric connectivity polynomial of two classes of nanotubes. Chaos, Solitons Fractals. 2016;89:290–4.

    Google Scholar 

  70. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    CAS  Google Scholar 

  71. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Google Scholar 

  72. Qin Y. Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. Int J Heat Mass Transf. 2016;97:391–9.

    Google Scholar 

  73. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    CAS  Google Scholar 

  74. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Google Scholar 

  75. Gao W, Yan L, Shi L. Generalized Zagreb index of polyomino chains and nanotubes. Optoelectron Adv Mater Rapid Commun. 2017;11(1–2):119–24.

    Google Scholar 

  76. Sheikholeslami M, Shehzad SA. Simulation of water based nanofluid convective flow inside a porous enclosure via Non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200–12.

    CAS  Google Scholar 

  77. Qin Y, Hiller JE. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014;85:389–99.

    Google Scholar 

  78. Sheikholeslami M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq. 2018;266:495–503.

    CAS  Google Scholar 

  79. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid: an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

    CAS  Google Scholar 

  80. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    CAS  Google Scholar 

  81. Qin Y, Liang J, Tan K, Li F. A side by side comparison of the cooling effect of building blocks with retro-reflective and diffuse-reflective walls. Sol Energy. 2016;133:172–9.

    Google Scholar 

  82. Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.

    CAS  Google Scholar 

  83. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.

    CAS  Google Scholar 

  84. Gao W, Wang WF, Jamil MK, Farahani MR. Electron energy studying of molecular structures via forgotten topological index computation. J Chem. 2016; Article ID 1053183. https://doi.org/10.1155/2016/1053183.

  85. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    CAS  Google Scholar 

  86. Şimşek E, Coskun S, Okutucu-Özyurt T, Unalan HE. Heat transfer enhancement by silver nanowire suspensions in microchannel heat sinks. Int J Therm Sci. 2018;123:1–13.

    Google Scholar 

  87. Qin Y, Liang J, Yang H, Deng Z. Gas permeability of pervious concrete and its implications on the application of pervious pavements. Measurement. 2016;78:104–10.

    Google Scholar 

  88. Sheikholeslami M. Influence of magnetic field on Al2O3–H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;263:472–88.

    CAS  Google Scholar 

  89. Sheikholeslami M, Jafaryar M. Zhixiong Li, Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    CAS  Google Scholar 

  90. Gao W, Farahani MR, Shi L. The forgotten topological index of some drug structures. Acta Med Mediterr. 2016;32:579–85.

    Google Scholar 

  91. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    CAS  Google Scholar 

  92. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    CAS  Google Scholar 

  93. Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47.

    Google Scholar 

  94. Sheikholeslami M, Darzi M, Li Z. Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf. 2018;125:1087–95.

    CAS  Google Scholar 

  95. Sheikholeslami M. Numerical modeling of Nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.

    CAS  Google Scholar 

  96. Gao W, Siddiqui MK, Imran M, Jamil MK, Farahani MR. Forgotten topological index of chemical structure in drugs. Saudi Pharm J. 2016;24(3):258–64.

    PubMed  PubMed Central  Google Scholar 

  97. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    CAS  Google Scholar 

  98. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    CAS  Google Scholar 

  99. Qin Y, He H, Ou X, Bao T. Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.118235.

    Article  Google Scholar 

  100. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    CAS  Google Scholar 

  101. Sheikholeslami M. CuO–water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    CAS  Google Scholar 

  102. Qin Y, Hiller JE, Meng D. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890.

    Article  Google Scholar 

  103. Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    CAS  Google Scholar 

  104. Sheikholeslami M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.

    CAS  Google Scholar 

  105. Gao W, Wang WF, Farahani MR. Topological indices study of molecular structure in anticancer drugs. J Chem. 2016; Article ID 3216327. https://doi.org/10.1155/2016/3216327.

  106. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for Alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    CAS  Google Scholar 

  107. Sheikholeslami M. Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrog Energy. 2017;42:19611–21.

    CAS  Google Scholar 

  108. Sheikholeslami M. Lattice Boltzmann method simulation of MHD non-Darcy nanofluid free convection. Phys B. 2017;516:55–71.

    CAS  Google Scholar 

  109. Qin Y, He Y, Hiller JE, Mei G. A new water-retaining paver block for reducing runoff and cooling pavement. J Clean Prod. 2018;199:948–56.

    Google Scholar 

  110. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of Nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    CAS  Google Scholar 

  111. Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.

    Google Scholar 

  112. Sheikholeslami M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann Method. J Mol Liq. 2017;234:364–74.

    CAS  Google Scholar 

  113. Sheikholeslami M, Haq R, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    CAS  Google Scholar 

  114. Jouybari BR, Osgouie KG, Meghdari A. Optimization of kinematic redundancy and workspace analysis of a dual-arm cam-lock robot. Robotica. 2016;34(1):23–42.

    Google Scholar 

  115. Sheikholeslami M. Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann Method. J Mol Liq. 2017;231:555–65.

    CAS  Google Scholar 

  116. Hasan MI. Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nanofluid. Appl Therm Eng. 2014;63(2):598–607.

    CAS  Google Scholar 

  117. Gao W, Wang WF. The vertex version of weighted wiener number for bicyclic molecular structures. Comput Math Methods Med. 2015; Article ID 418106. https://doi.org/10.1155/2015/418106.

  118. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    CAS  Google Scholar 

  119. Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.

    Google Scholar 

  120. Sheikholeslami M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq. 2017;229:137–47.

    CAS  Google Scholar 

  121. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    CAS  Google Scholar 

  122. Gao W, Wang WF, Second atom-bond connectivity index of special chemical molecular structures. J Chem. 2014; Article ID 906254. https://doi.org/10.1155/2014/906254.

  123. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    CAS  Google Scholar 

  124. Sheikholeslami M. Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. J Mol Liq. 2017;225:903–12.

    CAS  Google Scholar 

  125. Qin Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew Sustain Energy Rev. 2015;52:445–59.

    Google Scholar 

  126. Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z. Impact of Lorentz forces on Fe3O4–water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.

    CAS  Google Scholar 

  127. Qin Y, He Y, Wu B, Ma S, Zhang X. Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 2017;156(Supplement C):218–24.

    Google Scholar 

  128. Ma X, Sheikholeslami M, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod. 2020;245:118888.

    CAS  Google Scholar 

  129. Sheikholeslami M. Influence of Coulomb forces on Fe3O4–H2O nanofluid thermal improvement. Int J Hydrog Energy. 2017;42:821–9.

    CAS  Google Scholar 

  130. Adldoost H, Jouibary BR, Zabihollah A. Design of SMA micro-gripper for minimally invasive surgery. In: 2012 19th Iranian conference of biomedical engineering (ICBME); 2012. p. 97–100.

  131. Qin Y, He H. A new simplified method for measuring the albedo of limited extent targets. Solar Energy. 2017;157(Supplement C):1047–55.

    Google Scholar 

  132. Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.

    CAS  Google Scholar 

  133. Rezaeianjouybari B, Osgouie KG, Meghdari A. Employing neural networks for manipulability optimization of the dual-arm cam-lock robot. In: Proceedings of the ASME international mechanical engineering congress and exposition (IMECE); 2010, vol. 8.

  134. Sheikholeslami M. Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng. 2015;37:1623–33.

    CAS  Google Scholar 

  135. Aberkane S, Mouderes M, Ihdene M, Ghezal A. Effect of magnetic field on the heat and mass transfer in a rotating horizontal annulus. In: Proceedings of the international conference on heat transfer and fluid flow Prague, Czech Republic, August 11–12, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Tlili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafee, A., Shahraki, M.S., Taleghani, A.H. et al. Analysis of nanomaterial flow among two circular tubes in the presence of magnetic force. J Therm Anal Calorim 144, 993–1002 (2021). https://doi.org/10.1007/s10973-020-09555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09555-5

Keywords

Navigation