Skip to main content
Log in

Modelling and simulation of the operation of a calorimetric sensor for medical application

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A calorimetric sensor for medical application has been developed to measure surface and localize heat dissipations of human body. The instrument evaluates the heat flux transmitted by conduction, through a thermopile, between the human body surface and a programmed thermostat at a set temperature. In this work, a model with twelve transfer functions describing the operation of the sensor is exposed. This model relates the inputs to outputs of the system. Sensitivities, poles and zeros of each of the transfer functions are obtained with two independent experimental measurements and a numerical optimization method based on the adjustment of the experimental output curves with the ones calculated by the model. The model simulates the operation of the sensor, determines its operating limits and assesses the flow of heat between human skin and the thermostat sensor. The proposed method is applicable to any non-differential calorimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Isalgue A, Ortin J, Torra V, Viñals J. Heat flux calorimeters: dynamical model localized time constants. An Fis. 1980;76:192–6.

    Google Scholar 

  2. Socorro F, de Rivera MR, Jesús C. A thermal model of a flow calorimeter. J Therm Anal Calorim. 2001;64:357–66.

    Article  CAS  Google Scholar 

  3. Socorro F, de la Nuez I, Rodríguez de Rivera M. Calibration of isothermal heat conduction calorimeters: case of flow calorimeters. Measurement. 2003;33:241–50.

    Article  Google Scholar 

  4. Kirchner R, de Rivera MR, Seidel JM, Torra V. Identification of micro-scale calorimetric devices. Part VI. An approach by RC-representative model to improvements in TAM microcalorimeters. J Therm Anal Calorim. 2005;82:179–84.

    Article  CAS  Google Scholar 

  5. Rodríguez de Rivera M, Socorro F. Flow microcalorimetry and thermokinetics of liquid mixtures. J Therm Anal Calorim. 2007;87:591–4.

    Article  Google Scholar 

  6. Socorro F, Rodríguez de Rivera M. Modellization of the mixture dissipation in a flow microcalorimeter. J Therm Anal Calorim. 2007;88:741–4.

    Article  CAS  Google Scholar 

  7. Jesús C, Socorro F, Rodríguez de Rivera M. New approach to Tian’s equation applied to heat conduction and liquid injection calorimeters. J Therm Anal Calorim. 2012;110:1523–32.

    Article  Google Scholar 

  8. Hansen LD. Toward a standard nomenclature for calorimetry. Thermochim Acta. 2001;371:19–22.

    Article  CAS  Google Scholar 

  9. Wendlandt WW. Thermal methods of analysis. New York: Wiley; 1974.

    Google Scholar 

  10. Brown ME, editor. Handbook of thermal analysis and calorimetry: principles and practice, vol. 1. Amsterdam: Elsevier; 1998.

    Google Scholar 

  11. Lahiri BB, Bagavathiaappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: a review. Infrared Phys Technol. 2012;55:221–35.

    Article  CAS  Google Scholar 

  12. Livingston S, Nolan R, Frim J, Reed L, Limmer R. A thermographic study of the effect of body composition and ambient temperature on the accuracy of mean skin temperature calculations. Eur J Appl Physiol Occup Physiol. 1987;56:120–5.

    Article  CAS  Google Scholar 

  13. Haidar SG, Charity RM, Bassi RS, Nicolai P, Singh BK. Knee skin temperature following uncomplicated total knee replacement. Knee. 2006;13:422–6.

    Article  CAS  Google Scholar 

  14. Mehra A, Langkamer VG, Day A, Harris S, Spencer RF. Creative protein and skin temperature post total knee replacement. Knee. 2005;12:297–300.

    Article  CAS  Google Scholar 

  15. Rajapakse C, Grennan DM, Jones C, Wilkinson L, Jayson M. Thermography in the assessment of peripheral joint inflammation—a re-evaluation. Rheumatol Rehabil. 1981;20:81–7.

    Article  CAS  Google Scholar 

  16. Denoble AE, Hall N, Pieper CF, Kraus VB. Patellar skin surface temperature by thermography reflects knee osteoarthritis severity. Clin Med Insights Arthritis Musculosketet Disord. 2010;3:69–75.

    Google Scholar 

  17. Rokita E, Rok T, Taton G. Application of thermography for the assessment of allergen-induced skin reactions. Med Phys. 2011;38:765–72.

    Article  Google Scholar 

  18. Vecchio PC, Adebajo AO, Chard MD, Thomas PP, Hazleman BL. Thermography of frozen sholder and rotator cuff tendinitis. Clin Rheumatol. 1992;11:382–4.

    Article  CAS  Google Scholar 

  19. Miyakoshi N, Itoi E, Sato K, Suzuki K, Matsuura H. Skin temperature of the shoulder: circadian rhythms in normal and pathologic shoulders. J Shoulder Elb Surg. 1998;7:625–8.

    Article  CAS  Google Scholar 

  20. Godoy SE, Hayat MM, Ramirez DA, Myers SA, Padilla RS, Krishna S. Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging. Biomed Opt Express. 2017;8(4):2301–23.

    Article  Google Scholar 

  21. Socorro F, Rodriguez de Rivera M. Development of a calorimetric sensor for medical application. Part I—operating model. J Therm Anal Calorim. 2010;99:799–802.

    Article  CAS  Google Scholar 

  22. Jesús C, Socorro F, Rodríguez de Rivera M. Development of a calorimetric sensor for medical application. Part II. Identification and simulation. J Therm Anal Calorim. 2013;113:1003–7.

    Article  Google Scholar 

  23. Jesús C, Socorro F, Rodríguez de Rivera M. Development of a calorimetric sensor for medical application. Part III. Operating methods and applications. J Therm Anal Calorim. 2013;113:1009–13.

    Article  Google Scholar 

  24. Jesús C, Socorro F, Rodríguez de Rivera HJ, Rodríguez de Rivera M. Development of a calorimetric sensor for medical application. Part IV. Deconvolution of the calorimetric signal. J Therm Anal Calorim. 2014;116:151–5.

    Article  Google Scholar 

  25. Socorro F, Rodriguez de Rivera PJ, Rodriguez de Rivera M. Calorimetric minisensor for the localized measurement of surface heat dissipated from the human body. Sensors. 2016;16:1864.

    Article  Google Scholar 

  26. Socorro F, Rodríguez de Rivera PJ, Rodríguez de Rivera Mi, Rodríguez de Rivera M. Mathematical model for localised and surface heat flux of the human body obtained from measurements performed with a calorimetry minisensor. Sensors. 2017;17:2749.

    Article  Google Scholar 

  27. Rodríguez de Rivera PJ, Rodríguez de Rivera Mi, Socorro F, Rodríguez de Rivera M. Method for transient heat flux determination in human body surface using a direct calorimetry sensor. Measurement. 2019;139:1–9.

    Article  Google Scholar 

  28. Rodríguez de Rivera PJ, Rodríguez de Rivera Mi, Socorro F, Rodríguez de Rivera M. Measurement of human body surface heat flux using a calorimetric sensor. J Therm Biol. 2019;81:178–84.

    Article  Google Scholar 

  29. Ogata K. Modern control engineering. Upper Saddle River: Prentice Hall; 2010.

    Google Scholar 

  30. Åström KJ, Hägglund T. Advanced PID control. Durham: Research Triangle Park, Instrumentation, Systems, and Automation Society; 2006.

    Google Scholar 

  31. Ziegler JG, Nichols NB. Optimum settings for automatic controllers. ASME Trans. 1942;64:759–68.

    Google Scholar 

  32. Ziegler JG, Nichols NB. Process lags in automatic control circuits. ASME Trans. 1943;65:433–44.

    Google Scholar 

  33. Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim. 1998;9(1):112–47.

    Article  Google Scholar 

  34. Nelder JA, Mead C. A simplex method for function minimization. Comput J. 1965;7:308–13.

    Article  Google Scholar 

  35. Optimization ToolboxTM User’s Guide, 5th printing; Revised for Version 3.0 (Release 14); The MathWorks, Inc.: Natic, MA, USA, June 2004.

Download references

Funding

This work was completed while Pedro Jesús Rodríguez de Rivera was beneficiary of a pre-doctoral grant given by the “Ministerio de Ciencia, Innovación y Universidades (Spain)” and the “Agencia Canaria de Investigación, Innovación y Sociedad de la Información del Gobierno de Canarias (Spain)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rodríguez de Rivera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez de Rivera, P.J., Rodríguez de Rivera, M., Socorro, F. et al. Modelling and simulation of the operation of a calorimetric sensor for medical application. J Therm Anal Calorim 142, 483–492 (2020). https://doi.org/10.1007/s10973-020-09554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09554-6

Keywords

Navigation