Skip to main content
Log in

Performance evaluation of continuous solar still water desalination system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the experimental study aims to enhance a distillate water productivity of solar stills. To achieve this objective, solar still with continuous water desalination along 24 h was designed, structured, and operated in the city of Tanta, Gharbia Governorate, Egypt. For the solar stills, the temperatures of the condensing surface are very low throughout the night and during the early hours of the morning. This advantage makes the uses of the solar stills with continuous desalination along 24 h to be more effective. To achieve the continuous water desalination, the electric water heater (EWH) was installed in the basin of solar still to heat the basin water in the night and during the early hours of the morning. The EWH is powered by solar batteries that are charged by PV panels during sunrise. The experimental results presented that the accumulated distillate water productivity for using the continuous water desalination along 24 h varied between 10,631 and 12,087 mL m−2 day−1 after period use of 2 May to 11 August. The improvement in accumulated productivity of solar still with continuous water desalination along 24 h varied between 159.3 and 177.9% as compared to solar still working without EWH. Also, the improvement in the overall efficiency of solar still with continuous water desalination varied between 27.9 and 31.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. IRENA. Renewable energy in the water, energy and food nexus. Int Renew Energy Agency. 2015; 1–125.

  2. Kalogirou SA. Seawater desalination using renewable energy sources. Prog Energy Combust Sci. 2005;31:242–81.

    CAS  Google Scholar 

  3. Ghaffour N, Bundschuh J, Mahmoudi H, Goosen MFA. Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems. Desalination. 2015;356:94–114.

    CAS  Google Scholar 

  4. Gude VG, Nirmalakhandan N, Deng S. Renewable and sustainable approaches for desalination. Renew Sustain Energy Rev. 2010;14:2641–54.

    CAS  Google Scholar 

  5. Ghaffour N, Lattemann S, Missimer T, Ng KC, Sinha S, Amy G. Renewable energy driven innovative energy-efficient desalination technologies. Appl Energy. 2014;136:1155–65.

    CAS  Google Scholar 

  6. Arunkumar T, Kabeel AE, Raj K, Denkenberger D, Sathyamurthy R, Ragupathy P. Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation. J Clean Prod. 2018;195:1149–61.

    Google Scholar 

  7. Tiwari AK, Tiwari GN. Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition. Desalination. 2006;195:78–94.

    CAS  Google Scholar 

  8. Tripathi R, Tiwari GN. Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction. Sol Energy. 2006;80:956–67.

    CAS  Google Scholar 

  9. Suneja S, Tiwari GN. Effect of water depth on the performance of an inverted absorber double basin solar still. Energy Convers Manag. 1999;40:1885–97.

    Google Scholar 

  10. Tiwari AK, Tiwari GN. Thermal modeling based on solar fraction and experimental study of the annual and seasonal performance of a single slope passive solar still: the effect of water depths. Desalination. 2007;207:184–204.

    CAS  Google Scholar 

  11. El-Sebaii AA. Effect of wind speed on some designs of solar stills. Energy Convers Manag. 2000;41:523–38.

    Google Scholar 

  12. Khalifa AJN. On the effect of cover tilt angle of the simple solar still on its productivity in different seasons and latitudes. Energy Convers Manag. 2011;52:431–6.

    Google Scholar 

  13. Kabeel AE, El-Agouz SA. Review of researches and developments on solar stills. Desalination. 2011;276:1–12.

    CAS  Google Scholar 

  14. Mahdi NA. Performance prediction of a multi-basin solar still. Energy. 1992;17:87–93.

    Google Scholar 

  15. Somwanshi A, Tiwari AK. Performance enhancement of a single basin solar still with flow of water from an air cooler on the cover. Desalination. 2014;352:92–102.

    CAS  Google Scholar 

  16. Omara ZM, Kabeel AE, Essa FA. Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Convers Manag. 2015;103:965–72.

    Google Scholar 

  17. Qiblawey HM, Banat F. Solar thermal desalination technologies. Desalination. 2008;220:633–44.

    CAS  Google Scholar 

  18. Trieb F, Müller-Steinhagen H, Kern J, Scharfe J, Kabariti M, Al Taher A. Technologies for large scale seawater desalination using concentrated solar radiation. Desalination. 2009;235:33–43.

    CAS  Google Scholar 

  19. Rahbar N, Esfahani JA. Experimental study of a novel portable solar still by utilizing the heat pipe and thermoelectric module. Desalination. 2012;284:55–61.

    CAS  Google Scholar 

  20. Sampathkumar K, Senthilkumar P. Utilization of solar water heater in a single basin solar still-an experimental study. Desalination. 2012;297:8–19.

    CAS  Google Scholar 

  21. Srithar K, Rajaseenivasan T, Karthik N, Periyannan M, Gowtham M. Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator. Renew Energy. 2016;90:157–65.

    Google Scholar 

  22. Gorjian S, Ghobadian B, Tavakkoli Hashjin T, Banakar A. Experimental performance evaluation of a stand-alone point-focus parabolic solar still. Desalination. 2014;352:1–17.

    CAS  Google Scholar 

  23. Arunkumar T, Velraj R, Denkenberger DC, Sathyamurthy R, Kumar KV, Ahsan A. Productivity enhancements of compound parabolic concentrator tubular solar stills. Renew Energy. 2016;88:391–400.

    Google Scholar 

  24. Joy N, Antony A, Anderson A. Experimental study on improving the performance of solar still using air blower. Int J Ambient Energy. 2018;39(6):613–6.

    Google Scholar 

  25. Dev R, Abdul-Wahab SA, Tiwari GN. Performance study of the inverted absorber solar still with water depth and total dissolved solid. Appl Energy. 2011;88:252–64.

    CAS  Google Scholar 

  26. Refalo P, Ghirlando R, Abela S. The use of a solar chimney and condensers to enhance the productivity of a solar still. Desalin Water Treat. 2016;57:23024–37.

    CAS  Google Scholar 

  27. El-Sebaii AA, Ramadan MRI, Aboul-Enein S, Salem N. Thermal performance of a single-basin solar still integrated with a shallow solar pond. Energy Convers Manag. 2008;49:2839–48.

    CAS  Google Scholar 

  28. El-Sebaii AA, Aboul-Enein S, Ramadan MRI, Khallaf AM. Thermal performance of an active single basin solar still (ASBS) coupled to shallow solar pond (SSP). Desalination. 2011;280:183–90.

    CAS  Google Scholar 

  29. Kabeel AE, Abdelgaied M. Performance enhancement of modified solar still using multi-groups of two coaxial pipes in basin. Appl Therm Eng. 2017;118:23–32.

    Google Scholar 

  30. Ben Halima H, Frikha N, Ben Slama R. Numerical investigation of a simple solar still coupled to a compression heat pump. Desalination. 2014;337:60–6.

    CAS  Google Scholar 

  31. El-Naggar M, El-Sebaii AA, Ramadan MRI, Aboul-Enein S. Experimental and theoretical performance of finned-single effect solar still. Desalin Water Treat. 2016;57:17151–66.

    CAS  Google Scholar 

  32. El-Sebaii AA, Shalaby SM. Parametric study and heat transfer mechanisms of single basin v-corrugated solar still. Desalin Water Treat. 2015;55:285–96.

    CAS  Google Scholar 

  33. Samuel Hansen R, Kalidasa Murugavel K. Enhancement of integrated solar still using different new absorber configurations: an experimental approach. Desalination. 2017;422:59–67.

    CAS  Google Scholar 

  34. Sharshir SW, Kandeal AW, Ismail M, Abdelaziz GB, Kabeel AE, Yang N. Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: experimental approach. Appl Therm Eng. 2019;160:113997.

    CAS  Google Scholar 

  35. Mohamed AF, Hegazi AA, Sultan GI, El-Said EMS. Augmented heat and mass transfer effect on performance of a solar still using porous absorber: experimental investigation and exergetic analysis. Appl Therm Eng. 2019;150:1206–15.

    Google Scholar 

  36. Elashmawy M. Effect of surface cooling and tube thickness on the performance of a high temperature standalone tubular solar still. Appl Therm Eng. 2019;156:276–86.

    Google Scholar 

  37. Bahrami M, Avargani VM, Bonyadi M. Comprehensive experimental and theoretical study of a novel still coupled to a solar dish concentrator. Appl Therm Eng. 2019;151:77–89.

    Google Scholar 

  38. Modi KV, Modi JG. Performance of single-slope double-basin solar stills with small pile of wick Materials. Appl Therm Eng. 2019;149:723–30.

    Google Scholar 

  39. Kalbasi R, Alemrajabi AA, Afrand M. Thermal modeling and analysis of single and double effect solar stills: an experimental validation. Appl Therm Eng. 2018;129:1455–65.

    Google Scholar 

  40. Sharshir SW, Peng G, Yang N, El-Samadony MOA, Kabeel AE. A continuous desalination system using humidification–dehumidification and a solar still with an evacuated solar water heater. Appl Therm Eng. 2016;104:734–42.

    Google Scholar 

  41. Ashtiani S, Hormozi F. Design improvement in a stepped solar still based on entropy generation minimization. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08580-3.

    Article  Google Scholar 

  42. Panchal H, Sathyamurthy R, Kabeel AE, El-Agouz SA, Rufus DS, Arunkumar T, Manokar AM, Winston DP, Sharma A, Thakar N, Sadasivuni KK. Annual performance analysis of adding different nanofluids in stepped solar still. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08346-x.

    Article  Google Scholar 

  43. Sasikumar C, Manokar AM, Vimala M, Winston DP, Kabeel AE, Sathyamurthy R, Chamkha AJ. Experimental studies on passive inclined solar panel absorber solar still. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08770-z.

    Article  Google Scholar 

  44. Dhivagar R, Sundararaj S. Thermodynamic and water analysis on augmentation of a solar still with copper tube heat exchanger in coarse aggregate. J Therm Anal Calorim. 2019;136:89. https://doi.org/10.1007/s10973-018-7746-1.

    Article  CAS  Google Scholar 

  45. Dumka P, Mishra DR. Influence of salt concentration on the performance characteristics of passive solar still. Int J Ambient Energy. 2019. https://doi.org/10.1080/01430750.2019.1611638.

    Article  Google Scholar 

  46. Dumka P, Kushwah Y, Sharma A, Mishra DR. Comparative analysis and experimental evaluation of single slope solar still augmented with permanent magnets and conventional solar still. Desalination. 2019;459:34–45.

    CAS  Google Scholar 

  47. Kabeel AE, Harby K, Abdelgaied M, Eisa A. A comprehensive review of tubular solar still designs, performance, and economic analysis. J Clean Prod. 2020;246:119030.

    Google Scholar 

  48. Dumka P, Mishra DR. Performance evaluation of single slope solar still augmented with the ultrasonic fogger. Energy. 2020;190:116398.

    Google Scholar 

  49. Dashtban M, Tabrizi FF. Thermal analysis of a weir-type cascade solar still integrated with PCM storage. Desalination. 2011;279:415–22.

    CAS  Google Scholar 

  50. Kabeel AE, Abdelgaied M. Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. Desalination. 2016;383:22–8.

    CAS  Google Scholar 

  51. Kabeel AE, Abdelgaied M, Mahgoub M. The performance of a modified solar still using hot air injection and PCM. Desalination. 2016;379:102–7.

    CAS  Google Scholar 

  52. Kabeel AE, Abdelgaied M. Observational study of modified solar still coupled with oil serpentine loop from cylindrical parabolic concentrator and phase changing material under basin. Sol Energy. 2017;144:71–8.

    Google Scholar 

  53. Arunkumar T, Kabeel AE. Effect of phase change material on concentric circular tubular solar still-Integration meets enhancement. Desalination. 2017;414:46–50.

    CAS  Google Scholar 

  54. Faegh M, Shafii MB. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination. 2017;409:128–35.

    CAS  Google Scholar 

  55. Kabeel AE, Teamah MA, Abdelgaied M, Abdel Aziz GB. Modified pyramid solar still with v-corrugated absorber plate and PCM as a thermal storage medium. J Clean Prod. 2017;161:881–7.

    CAS  Google Scholar 

  56. Al-harahsheh M, Abu-Arabi M, Mousa H, Alzghoul Z. Solar desalination using solar still enhanced by external solar collector and PCM. Appl Therm Eng. 2018;128:1030–40.

    Google Scholar 

  57. Abdel-Rehim ZS, Lasheen A. Improving the performance of solar desalination systems. Renew Energy. 2005;30:1955–71.

    Google Scholar 

  58. Sakthivel M, Shanmugasundaram S. Effect of energy storage medium (black granite gravel) on the performance of a solar still. Int J Energy Res. 2008;32:68–82.

    Google Scholar 

  59. Kabeel AE, Abdelgaied M, Eisa A. Enhancing the performance of single basin solar still using high thermal conductivity sensible storage materials. J Clean Prod. 2018;183:20–5.

    CAS  Google Scholar 

  60. Shanmugan S, Janarthanan B, Chandrasekaran J. Performance of single-slope single-basin solar still with sensible heat storage materials. Desalin Water Treat. 2012;41:195–203.

    CAS  Google Scholar 

  61. Rufuss DDW, Raj Kumar V, Suganthi L, Iniyan S, Davies PA. Techno-economic analysis of solar stills using integrated fuzzy analytical hierarchy process and data envelopment analysis. Sol Energy. 2018;159:820–33.

    Google Scholar 

  62. Kabeel AE, Abdelgaied M, Eisa A. Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still. Renew Energy. 2019;132:119–28.

    CAS  Google Scholar 

  63. Kabeel AE, Sathyamurthy R, El-Agouz SA, Manokar AM, El-Said EMS. Experimental studies on inclined PV panel solar still with cover cooling and PCM. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08561-6.

    Article  Google Scholar 

  64. Sakthivel TG, Arjunan TV. Thermodynamic performance comparison of single slope solar stills with and without cotton cloth energy storage medium. J Therm Anal Calorim. 2019;137:351. https://doi.org/10.1007/s10973-018-7909-0.

    Article  CAS  Google Scholar 

  65. Suresh C, Shanmugan S. Effect of water flow in a solar still using novel materials. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08449-5.

    Article  Google Scholar 

  66. Sathish Kumar TR, Jegadheeswaran S, Chandramohan P. Performance investigation on fin type solar still with paraffin wax as energy storage media. J Therm Anal Calorim. 2019;136:101. https://doi.org/10.1007/s10973-018-7882-7.

    Article  CAS  Google Scholar 

  67. Omara AAM, Abuelnuor AAA, Mohammed HA, Khiadani M. Phase change materials (PCMs) for improving solar still productivity: a review. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08645-3.

    Article  Google Scholar 

  68. Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135(2):1145–59. https://doi.org/10.1007/s10973-018-7500-8.

    Article  CAS  Google Scholar 

  69. Coleman HW, Steele WG. Engineering application of experimental uncertainty analysis. AIAA J. 1995;33(10):1888–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Kabeel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabeel, A.E., Abdelgaied, M. & Mahmoud, G.M. Performance evaluation of continuous solar still water desalination system. J Therm Anal Calorim 144, 907–916 (2021). https://doi.org/10.1007/s10973-020-09547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09547-5

Keywords

Navigation