Skip to main content
Log in

Thermal cycling effect on the kinetics of glass transition and crystallization of a Zr-based bulk metallic glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We investigated the effects of thermal cycling on the kinetics of glass transition and crystallization of a classic Zr-based BMG (Vit-1) by differential scanning calorimetry (DSC). Two different thermal cycling conditions with different cycles and holding times were used. Sub–sub-Tg isothermal annealing condition was also adopted for comparison. Continuous DSC tests were conducted to calculate the activation energies of glass transition and crystallization based on different equations. Isothermal DSC tests were also conducted to further study the crystallization mechanisms in views of local Avrami exponent. Based on the experimental results, the related mechanisms have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiang JZ, Hofmann D, Jarvis DJ, Fecht HJ. Low-density high-strength bulk metallic glasses and their composites: a review. Adv Eng Mater. 2015;17:761–80.

    CAS  Google Scholar 

  2. Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mater Sci Eng R. 2004;44:45–89.

    Google Scholar 

  3. Yue Y, Wang R, Ma DQ, Tian JF, Zhang XY, Jing Q, Ma MZ, Liu RP. Fatigue behavior of a Zr-based bulk metallic glass under uniaxial tension–tension and three-point bending loading mode. Intermetallics. 2015;60:86–91.

    CAS  Google Scholar 

  4. Wang BP, Wang L, Wang S, Fan QB, Xue YF, Zhang HF, Fu HM. Mechanical response of Ti-based bulk metallic glass under plate-impact compression. Intermetallics. 2015;63:12–8.

    CAS  Google Scholar 

  5. Si JJ, Chen XH, Cai YH, Wu YD, Wang T, Hui XH. Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions. Corro Sci. 2016;107:123–32.

    CAS  Google Scholar 

  6. Maddala DR, Hebert RJ. Sliding wear behavior of Fe50−xCr15Mo14C15B6Erx (x = 0, 1, 2 at.%) bulk metallic glass. Wear. 2012;294:246–56.

    Google Scholar 

  7. Huang Y, Zhang W, Fan H, Wang D, Sun J, Mi J. The effects of annealing on the microstructure and the dynamic mechanical strength of a ZrCuNiAl bulk metallic glass. Intermetallics. 2013;42:192–7.

    CAS  Google Scholar 

  8. Yoon KS, Lee M, Fleury E, Lee JC. Cryogenic temperature plasticity of a bulk amorphous alloy. Acta Mater. 2010;58:5295–304.

    CAS  Google Scholar 

  9. Gong X, Ma Y, Guo H, Gong S. Effect of thermal cycling on microstructure evolution and elements diffusion behavior near the interface of Ni/NiAl diffusion couple. J Alloys Compd. 2015;642:117–23.

    CAS  Google Scholar 

  10. Meng XL, Li H, Cai W, Hao SJ, Cui LS. Thermal cycling stability mechanism of Ti50.5Ni33.5Cu11.5Pd4.5 shape memory alloy with near-zero hysteresis. Scripta Mater. 2015;103:30–3.

    CAS  Google Scholar 

  11. Krooß P, Holzweissig MJ, Niendorf T, Somsen C, Schaper M, Chumlyakov YI, Maier HJ. Thermal cycling behavior of an aged FeNiCoAlTa single-crystal shape memory alloy. Scripta Mater. 2014;81:28–31.

    Google Scholar 

  12. Wang X, Shao Y, Gong P, Yao KF. Effect of thermal cycling on the mechanical properties of Zr41Ti14Cu12.5Ni10Be22.5 alloy. Sci China Phys Mech Astron. 2012;55:2357–61.

    CAS  Google Scholar 

  13. Wang X, Shao Y, Gong P, Yao KF. The effect of simulated thermal cycling on thermal and mechanical stability of a Ti-based bulk metallic glass. J Alloys Compd. 2013;575:449–54.

    CAS  Google Scholar 

  14. Patel AT, Pratap A. Study of kinetics of glass transition of metallic glasses. J Therm Anal Calorim. 2012;110:567–71.

    CAS  Google Scholar 

  15. Wang SX, Quan SG, Dong C. Kinetic of glass transition of Zr57. 2Al21. 4Ni21. 4 bulk metallic glass. Thermochim Acta. 2012;532:92–5.

    CAS  Google Scholar 

  16. Guo N, Tang C, Wang J, Hu C, Zhou H. Kinetics of glass transition of La65Al20Co15 metallic glass. J Alloys Compd. 2015;629:11–5.

    CAS  Google Scholar 

  17. Zhang B, Tang C, Xu W, Pan W, Wang J, Zhou H. Kinetics of glass transition of Ce65Al20Co15 metallic glass. Mater Chem Phys. 2013;142:707–11.

    CAS  Google Scholar 

  18. Bai FX, Yao JH, Wang YX, Pan J, Li Y. Crystallization kinetics of an Au-based metallic glass upon ultrafast heating and cooling. Scripta Mater. 2017;132:58–62.

    CAS  Google Scholar 

  19. Yang M, Liu XJ, Ruan HH, Wu Y, Wang H, Lu ZP. High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses. J Appl Phys. 2016;119:245112.

    Google Scholar 

  20. Gong P, Wang X, Yao KF. Effects of alloying elements on crystallization kinetics of Ti–Zr–Be bulk metallic glass. J Mater Sci. 2016;51:5321–9.

    CAS  Google Scholar 

  21. Sohn S, Jung Y, Xie Y, Osuji C, Schroers J, Cha JJ, Jung Y, Xie Y, Osuji C, Schroers J, Cha JJ. Nanoscale size effects in crystallization of metallic glass nanorods. Nat Commun. 2015;6:8157.

    PubMed  PubMed Central  Google Scholar 

  22. Wang X, Lee H, Yi S. Crystallization behavior of preannealed bulk amorphous alloy Zr62Al8Ni13Cu17. Mater Lett. 2006;60:935–8.

    CAS  Google Scholar 

  23. Zhuang YX, Wang WH. Effects of relaxation on glass transition and crystallization of ZrTiCuNiBe bulk metallic glass. J Appl Phys. 2000;87:8209–11.

    CAS  Google Scholar 

  24. Wang X, Gong P, Deng L, Jin J, Wang S, Li F. Sub-Tg annealing effect on the kinetics of glass transition and crystallization for a Ti-Zr-Be-Fe bulk metallic glass. J Non-Cryst Solids. 2017;473:132–40.

    CAS  Google Scholar 

  25. Peker A, Johnson WL. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett. 1993;63:2342–4.

    Google Scholar 

  26. Lee SB, Kim NJ. Crystallisation kinetics of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 BMG alloy during heating. Philoso Mag. 2005;85:139–52.

    CAS  Google Scholar 

  27. Cheng S, Wang C, Ma M, Shan D, Guo B. Non-isothermal crystallization kinetics of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 amorphous alloy. Thermochim Acta. 2014;587:11–7.

    CAS  Google Scholar 

  28. Hays CC, Kim CP, Johnson WL. Large supercooled liquid region and phase separation in the Zr–Ti–Ni–Cu–Be bulk metallic glasses. Appli Phys Lett. 1999;75:1089–91.

    CAS  Google Scholar 

  29. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.

    CAS  Google Scholar 

  30. Moynihan CT. Correlation between the width of the glass transition region and the temperature dependence of the viscosity of high-Tg glasses. J Am Ceram Soc. 1993;76:1081–7.

    CAS  Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    CAS  Google Scholar 

  32. Ozawa T. A new method of analyzing thermogravimetric data. J Bull Chem Soc Jpn. 1965;38:1881–6.

    CAS  Google Scholar 

  33. Calka A, Radliński AP. Decoupled bulk and surface crystallization in Pd85Si15 glassy metallic alloys: description of isothermal crystallization by a local value of the Avrami exponent. J Mater Res. 1988;3:59–66.

    CAS  Google Scholar 

  34. Frey M, Busch R, Possart W, Gallino I. On the thermodynamics, kinetics, and sub-Tg relaxations of Mg-based bulk metallic glasses. Acta Mater. 2018;155:117–27.

    CAS  Google Scholar 

  35. Liu C, Pineda E, Crespo D, Qiao J, Evenson Z, Ruta B. Sub-Tg relaxation times of the α process in metallic glasses. J Non Cryst Solids. 2017;471:322–7.

    CAS  Google Scholar 

  36. Dmowski W, Fan C, Morrison ML, Liaw PK, Egami T. Structural changes in bulk metallic glass after annealing below the glass-transition temperature. Mater Sci Eng A. 2007;471:125–9.

    Google Scholar 

  37. Chen HS. On mechanisms of structural relaxation in a Pd48Ni32P20 glass. J Non-Cryst Solids. 1981;4:289–305.

    Google Scholar 

  38. Wang XD, Jiang JZ, Yi S. Reversible structural relaxation and crystallization of Zr62Al8Ni13Cu17 bulk metallic glass. J Non Cryst Solids. 2007;353:4157–61.

    CAS  Google Scholar 

  39. Mitrofanov YP, Afonin GV, Makarov AS, Kobelev NP, Khonik VA. A new understanding of the sub-Tg enthalpy relaxation in metallic glasses. Intermetallics. 2018;101:116–22.

    CAS  Google Scholar 

  40. Venkataraman S, Hermann H, Sordelet DJ, Eckert J. Influence of sub-Tg annealing on the crystallization kinetics of Cu47Ti33Zr11Ni8Si1 metallic glass. J Appl Phys. 2007;104:066107.

    Google Scholar 

  41. Martin I, Ohkubo T, Ohnuma M, Deconihout B, Hono K. Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass. Acta Mater. 2004;52:4427–35.

    CAS  Google Scholar 

  42. Kelton KF, Lee GW, Gangopadhyay AK, Hyers RW, Rathz TJ, Rogers JR, Robinson MB, Robinson DS. First x-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys Rev Lett. 2003;90:195504.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51601063), the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51725504), the Research Fund of the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (Grant No. 31715005), and Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB576). The authors are also grateful to the State Key Laboratory of Materials Processing and Die & Mould Technology and the Analytical and Testing Center, Huazhong University of Science and Technology, for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyun Wang or Junsong Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, P., Li, F., Yin, G. et al. Thermal cycling effect on the kinetics of glass transition and crystallization of a Zr-based bulk metallic glass. J Therm Anal Calorim 142, 63–73 (2020). https://doi.org/10.1007/s10973-020-09522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09522-0

Keywords

Navigation