Skip to main content
Log in

Numerical computing for axisymmetric transport phenomenon in Carreau liquid using variable conductance models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Conservation laws and variable conductance (viscosity, thermal conductivity and mass diffusion coefficient) models are used to develop mathematical problems describing transport mechanism in Carreau fluid over a non-uniformly moving surface. Boundary conditions are developed by no-slip theory. Mathematical models are transformed into suitable residual integrals which are approximated by Galerkin approximations. The obtained residuals are used for solving problems numerically using finite element method. Numerical investigation of variable viscosity, thermal conductivity and mass diffusion coefficients is carried out to examine the impact of parameters. The heat dissipated as a result of friction among the particles of the fluid of constant viscosity is greater than the heat dissipated due to friction force in the fluid of temperature-dependent viscosity. It is also found that ohmic phenomenon in the fluid of variable viscosity is prominent than that in the fluid of constant viscosity. Therefore, this fact must be in mind while using the fluids of variable viscosity in engineering applications. The transport of mass in fluid of constant viscosity is greater than that in fluid of variable viscosity. The Lorentz force is observed to oppose the flow. Hence, flow is decelerated by an increase in the intensity of magnetic field. The rate of transportation of mass has shown increasing trend when mass diffusion coefficient increases due to temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sheikhzadeha GA, Heydaria R, Hajialigola N, Fattahia A, Mehrabianb MA. Heat and mass transfer by natural convection around a hot body in a rectangular cavity. Mech Eng. 2013;1(20):1474–84.

    Google Scholar 

  2. Hayat T, Qayyum S, Alsaedi A, Shafiq A. Theoretical aspects of Brownian motion and thermophoresis on nonlinear convective flow of magneto Carreau nanofluid with Newtonian conditions. Results Phys. 2018;1(10):521–8.

    Article  Google Scholar 

  3. Hayat T, Saleem N, Asghar S, Alhothuali MS, Alhomaidan A. Influence of induced magnetic field and heat transfer on peristaltic transport of a Carreau fluid. Commun Nonlinear Sci Numer Simul. 2011;16(9):3559–77.

    Article  Google Scholar 

  4. Waqas M, Khan MI, Hayat T, Alsaedi A. Numerical simulation for magneto Carreau nanofluid model with thermal radiation: a revised model. Comput Methods Appl Mech Eng. 2017;1(324):640–53.

    Article  Google Scholar 

  5. Hayat T, Aziz A, Muhammad T, Alsaedi A. Numerical simulation for three-dimensional flow of Carreau nanofluid over a nonlinear stretching surface with convective heat and mass conditions. J Braz Soc Mech Sci Eng. 2019;41(1):55.

    Article  Google Scholar 

  6. Hoseinzadeh S, Ghasemiasl R, Havaei D, Chamkha AJ. Numerical investigation of rectangular thermal energy storage units with multiple phase change materials. J Mol Liq. 2018;1(271):655–60.

    Article  Google Scholar 

  7. Hoseinzadeh S, Otaghsara ST, Khatir MZ, Heyns PS. Numerical investigation of thermal pulsating alumina/water nanofluid flow over three different cross-sectional channel. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-09-2019-0671.

    Article  Google Scholar 

  8. Hoseinzadeh S, Heyns PS, Kariman H. Numerical investigation of heat transfer of laminar and turbulent pulsating AlO/water nanofluid flow. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-06-2019-0485.

    Article  Google Scholar 

  9. Hoseinzadeh S, Moafi A, Shirkhani A, Chamkha AJ. Numerical validation heat transfer of rectangular cross-section porous fins. J Thermophys Heat Transf. 2019;17:1–7.

    Google Scholar 

  10. Hoseinzadeh S, Heyns PS, Chamkha AJ, Shirkhani A. Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J Thermal Anal Calorim. 2019;138:727–35.

    Article  CAS  Google Scholar 

  11. Kariman H, Hoseinzadeh S, Shirkhani A, Heyns PS, Wannenburg J. Energy and economic analysis of evaporative vacuum easy desalination system with brine tank. J Thermal Anal Calorim. 2019;2:1.

    Google Scholar 

  12. Kariman H, Hoseinzadeh S, Heyns PS. Energetic and exergetic analysis of evaporation desalination system integrated with mechanical vapor recompression circulation. Case Stud Thermal Eng. 2019;1(16):100548.

    Article  Google Scholar 

  13. Hoseinzadeh S, Hadi Zakeri M, Shirkhani A, Chamkha AJ. Analysis of energy consumption improvements of a zero-energy building in a humid mountainous area. J Renew Sustain Energy. 2019;11(1):015103.

    Article  Google Scholar 

  14. Hoseinzadeh S, Azadi R. Simulation and optimization of a solar-assisted heating and cooling system for a house in Northern of Iran. J Renew Sustain Energy. 2017;9(4):045101.

    Article  Google Scholar 

  15. Nezhad MY, Hoseinzadeh S. Mathematical modelling and simulation of a solar water heater for an aviculture unit using MATLAB/SIMULINK. J Renew Sustain Energy. 2017;9(6):10.

    Google Scholar 

  16. Hayat T, Aziz A, Muhammad T, Alsaedi A. An optimal analysis for Darcy–Forchheimer 3D flow of Carreau nanofluid with convectively heated surface. Results Phys. 2018;1(9):598–608.

    Article  Google Scholar 

  17. Hayat T, Ullah I, Ahmad B, Alsaedi A. Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction. Results Phys. 2017;1(7):715–22.

    Article  Google Scholar 

  18. Khan M, Irfan M, Khan WA, Alshomrani AS. A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation. Results Phys. 2017;1(7):2692–704.

    Article  Google Scholar 

  19. Prasad KV, Pal D, Umesh V, Rao NP. The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet. Commun Nonlinear Sci Numer Simul. 2010;15(2):331–44.

    Article  Google Scholar 

  20. Singh V, Agarwal S. Flow and heat transfer of Maxwell fluid with variable viscosity and thermal conductivity over an exponentially stretching sheet. Am J Fluid Dyn. 2013;3:87–95.

    Google Scholar 

  21. Mukhopadhyay S, Layek GC. Effects of variable fluid viscosity on flow past a heated stretching sheet embedded in a porous medium in presence of heat source/sink. Meccanica. 2012;47(4):863–76.

    Article  Google Scholar 

  22. Reddy S, Naikoti K, Rashidi MM. MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity. Trans A. Razmadze Math Inst. 2017;171(2):195–211.

    Article  Google Scholar 

  23. Farooq M, Ahmad S, Javed M, Anjum A. Analysis of Cattaneo–Christov heat and mass fluxes in the squeezed flow embedded in porous medium with variable mass diffusivity. Results Phys. 2017;1(7):3788–96.

    Article  Google Scholar 

  24. Qureshi IH, Nawaz M, Rana S, Nazir U, Chamkha AJ. Investigation of variable thermo-physical properties of viscoelastic rheology: a Galerkin finite element approach. AIP Adv. 2018;8(7):075027.

    Article  Google Scholar 

  25. Qureshi IH, Nawaz M, Rana S, Zubair T. Galerkin finite element study on the effects of variable thermal conductivity and variable mass diffusion conductance on heat and mass transfer. Commun Theor Phys. 2018;70(1):049.

    Article  CAS  Google Scholar 

  26. Nawaz M, Arif U, Qureshi IH. Impact of temperature dependent diffusion coefficients on heat and mass transport in viscoelastic liquid using generalized Fourier theory. Physica Scripta. 2019;. https://doi.org/10.1088/1402-4896/ab1cec.

    Article  Google Scholar 

  27. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135(1):305–23.

    Article  CAS  Google Scholar 

  28. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;1(344):319–33.

    Article  Google Scholar 

  29. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;1(141):974–80.

    Article  Google Scholar 

  30. Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;1(135):470–8.

    Article  Google Scholar 

  31. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;1(123):418–31.

    Article  Google Scholar 

  32. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;1(120):772–81.

    Article  Google Scholar 

  33. Sheikholeslami M, Rashidi MM. Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur Phys J Plus. 2015;130(6):115.

    Article  Google Scholar 

  34. Palani G, Kumar EL, Kim KY. Free convection effects on a vertical cone with variable viscosity and thermal conductivity. J Appl Mech Tech Phys. 2016;57(3):473–82.

    Article  CAS  Google Scholar 

  35. Hayat T, Sajjad R, Ellahi R, Alsaedi A, Muhammad T. Homogeneous-heterogeneous reactions in MHD flow of micropolar fluid by a curved stretching surface. J Mol Liq. 2017;1(240):209–20.

    Article  Google Scholar 

  36. Saleem S, Nadeem S, Awais M. Time-dependent second-order viscoelastic fluid flow on rotating cone with heat generation and chemical reaction. J Aerosp Eng. 2016;29(4):04016009.

    Article  Google Scholar 

  37. Nawaz M, Rana S. Computational study of chemical reactions during heat and mass transfer in magnetized partially ionized nano-liquid. J Braz Soc Mech Sci Eng. 2019;41(8):326.

    Article  Google Scholar 

  38. Majeed A, Noori FM, Zeeshan A, Mahmood T, Rehman SU, Khan I. Analysis of activation energy in magnetohydrodynamic flow with chemical reaction and second order momentum slip model. Case Stud Therm Eng. 2018;1(12):765–73.

    Article  Google Scholar 

  39. Nawaz M, Zubair T. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents. Results Phys. 2017;1(7):4111–22.

    Article  Google Scholar 

  40. Nazir U, Saleem S, Nawaz M, Alderremy AA. Three-dimensional heat transfer in nonlinear flow: a FEM computational approach. J Therm Anal Calorim. 2019;13:1.

    Google Scholar 

  41. Rana S, Nawaz M, Alharbi SO. Unsteady heat transfer in colloidal suspension containing hybrid nanostructures. J Therm Anal Calorim. 2019;138:1–9. https://doi.org/10.1007/s10973-019-09178-5

    Article  CAS  Google Scholar 

  42. Eid MR, Mahny KL, Muhammad T, Sheikholeslami M. Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface. Results Phys. 2018;1(8):1185–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayer Obaid Alharbi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, S.O. Numerical computing for axisymmetric transport phenomenon in Carreau liquid using variable conductance models. J Therm Anal Calorim 145, 161–172 (2021). https://doi.org/10.1007/s10973-020-09510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09510-4

Keywords

Navigation