Skip to main content
Log in

Preparation and characterization of a novel form-stable phase change material for thermal energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of novel polymeric form-stable phase change materials (FSPCMs) composed of poly(trimethylolpropane trimethacrylate-stearyl methacrylate) (PTS) and stearic acid were synthesized via solvent-free bulk polymerization. Stearic acid was used as phase change component, and PTS acted as supporting material. The chemical structure, crystalline properties, phase change ability, thermal reliability, and stability were characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), polarizing optical microscopy (POM), differential scanning calorimetry (DSC), accelerated thermal cycling testing, and thermogravimetric analysis (TG), respectively. The DSC results revealed that the maximum freezing and melting latent heat can reach 143.5 and 146.7 J g−1. The POM and XRD results proved the existence of spherocrystal. Accelerating thermal test and TG demonstrated that FSPCMs had good reliability and stability in practical application. The prepared form-stable phase change materials with high enthalpy and proper phase change temperature have a promising prospect in thermal energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li C, Yu H, Song Y, Zhao M. Synthesis and characterization of PEG/ZSM-5 composite phase change materials for latent heat storage. Renew Energy. 2018;121:45–52.

    Article  CAS  Google Scholar 

  2. Juarez Varon D, Ferrandiz Bou S, Peydro Rasero MA, Mengual Recuerda A. Industrial applications of phase change materials. 3C TECNOLOGIA. 2015;4:32–41.

    Google Scholar 

  3. Li Z, Zhang S. Research progress and application of phase change materials. Build Energy Effic. 2016;44(62–65):112.

    Google Scholar 

  4. Kong W, Lei Y, Jiang Y, Lei J. Preparation and thermal performance of polyurethane/PEG as novel form-stable phase change materials for thermal energy storage. J Therm Anal Calorim. 2017;130:1011–9.

    Article  CAS  Google Scholar 

  5. Wu W, Huang X, Li K, Yao R, Chen R, Zou R. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion. Appl Energy. 2017;190:474–80.

    Article  CAS  Google Scholar 

  6. Zhu YB, Zhang ZZ, Yang YF, Du XP, Chen F, Ni H. Analysis of the aroma change of instant green tea induced by the treatment with enzymes from Aspergillus niger prepared by using tea stalk and potato dextrose medium. Flavour Fragr J. 2017;32:451–60.

    Article  CAS  Google Scholar 

  7. Fei G, Yan T, Wang H, Shen Y, Zou J. Micromorphology, phase behavior, and properties of environmental, multi-cross-linked polyurethane/polyacrylate microemulsions based on in situ surfactant-free polymerization. Colloid Polym Sci. 2017;295:1743–55.

    Article  CAS  Google Scholar 

  8. Zhang B, Zhang Z, Kapar S, Ataeian P, Da Silva Bernardes J, Berry R, Zhao W, Zhou G, Tam KC. Microencapsulation of phase change materials with Polystyrene/Cellulose nanocrystal hybrid shell via pickering emulsion polymerization. Acs Sustain Chem Eng. 2019;7:17756–67.

    Article  CAS  Google Scholar 

  9. Yoo Y, Martinez C, Youngblood JP. Synthesis and characterization of microencapsulated phase change materials with poly(urea − urethane) shells containing cellulose nanocrystals. Acs Appl Mater Interface. 2017;9:31763–76.

    Article  CAS  Google Scholar 

  10. Wu W, Huang X, Yao R, Chen R, Li K, Zou R. Synthesis and properties of Polyurethane/Coal-Derived carbon foam phase change composites for thermal energy storage. Acta Phys-Chim Sin. 2017;33:255–61.

    Article  CAS  Google Scholar 

  11. Ke H. Morphology and thermal performance of quaternary fatty acid eutectics/polyurethane/Ag form-stable phase change composite fibrous membranes. J Therm Anal Calorim. 2017;129:1533–45.

    Article  CAS  Google Scholar 

  12. Ahn D, Lee J, Kang C. Physico-chemical properties of new composite polymer for heat resistance with thin-film form through the blending of m -aramid and polyurethane (PU). Polymer. 2018;138:17–23.

    Article  CAS  Google Scholar 

  13. Tumirah K, Hussein MZ, Zulkarnain Z, Rafeadah R. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy. 2014;66:881–90.

    Article  CAS  Google Scholar 

  14. Fang G, Li H, Yang F, Liu X, Wu S. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J. 2009;153:217–21.

    Article  CAS  Google Scholar 

  15. Moreno Balderrama JA, Dourges M, Magueresse A, Maheo L, Deleuze H, Glouannec P. Emulsion-templated pullulan monoliths as phase change materials encapsulating matrices. Mater Today Commun. 2018;17:466–73.

    Article  CAS  Google Scholar 

  16. Hong Y, Ding S, Wu W, Hu J, Voevodin AA, Gschwender L, Snyder E, Chow L, Su M. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated Phase-Change materials for heat transfer. ACS Appl Mater Interface. 2010;2:1685–91.

    Article  CAS  Google Scholar 

  17. Singh SP, Bhat V. Applications of organic phase change materials for thermal comfort in buildings. Rev Chem Eng. 2014;30:521–38.

    Article  Google Scholar 

  18. Sarı A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Convers Manag. 2016;117:132–41.

    Article  Google Scholar 

  19. Zhang Q, Feng J. Difunctional olefin block copolymer/paraffin form-stable phase change materials with simultaneous shape memory property. Sol Energy Mater Sol C. 2013;117:259–66.

    Article  CAS  Google Scholar 

  20. Guo P, Weimer MS, Emery JD, Diroll BT, Chen X, Hock AS, Chang RPH, Martinson ABF, Schaller RD. Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband All-Optical switching. ACS Nano. 2017;11:693–701.

    Article  CAS  Google Scholar 

  21. Zheng X, Xie N, Chen C, Gao X, Huang Z, Zhang Z. Numerical investigation on paraffin/expanded graphite composite phase change material based latent thermal energy storage system with double spiral coil tube. Appl Therm Eng. 2018;137:164–72.

    Article  CAS  Google Scholar 

  22. Arshad A, Ali HM, Ali M, Manzoor S. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl Therm Eng. 2017;112:143–55.

    Article  CAS  Google Scholar 

  23. Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev. 2017;74:26–50.

    Article  CAS  Google Scholar 

  24. Qiu XZ, Tao Y, Xu XQ, He XH, Fu XY. Synthesis and characterization of paraffin/TiO2 -P(MMA-co-BA) phase change material microcapsules for thermal energy storage. J Appl Polym Sci. 2018;135:46447.

    Article  Google Scholar 

  25. Peng K, Fu L, Li X, Ouyang J, Yang H. Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage. Appl Clay Sci. 2017;138:100–6.

    Article  CAS  Google Scholar 

  26. Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;134:373–81.

    Article  CAS  Google Scholar 

  27. Kapilow D, Hsuan YG, Sun Y, McCarthy M. Convective melting and freezing of phase change materials encapsulated within small diameter polymer tubes. Exp Therm Fluid Sci. 2018;92:259–69.

    Article  CAS  Google Scholar 

  28. Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98.

    Article  CAS  Google Scholar 

  29. Cai Y, Xu X, Gao C, Bian T, Qiao H, Wei Q. Structural morphology and thermal performance of composite phase change materials consisting of capric acid series fatty acid eutectics and electrospun polyamide6 nanofibers for thermal energy storage. Mater Lett. 2012;89:43–6.

    Article  CAS  Google Scholar 

  30. Li M, Wu Z, Kao H. Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials. Appl Energy. 2011;88:3125–32.

    Article  CAS  Google Scholar 

  31. Li T, Yuan Y, Zhang N, Thermal properties of phase change cement board with capric acid/expanded perlite form-stable phase change material. Adv Mech Eng. 2017;9:1–8.

    Google Scholar 

  32. Ismar E, Sarac AS, Electrospun polyacrylonitrile-lauric acid composite nanofiber webs as a thermal energy storage material. J Eng Fiber Fabr. 2019;14:1–6.

    Google Scholar 

  33. Chen Z, Shan F, Cao L, Fang G. Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage. Sol Energy Mater Sol Cell. 2012;102:131–6.

    Article  CAS  Google Scholar 

  34. Zhang N, Yuan Y, Li T, Cao X, Yang X. Study on thermal property of lauric-palmitic-stearic acid/vermiculite composite as form-stable phase change material for energy storage. Adv Mech Eng. 2015;7:1–8.

    Google Scholar 

  35. Wu N, Wu X, Shi C, Ji J, Liu W. Shape-Stabilized composite Phase-Change materials prepared with stearic acid and active carbon. J Thermophys Heat Transf. 2016;30:192–6.

    Article  CAS  Google Scholar 

  36. Tang Z, Liu A, Chen Z. Study on performance of colloidal mixtures consisted of stearic acid and Na2HPO4 center dot 12H(2)O for use as phase change materials of thermal energy storage. Energy Convers Manag. 2010;51:1459–63.

    Article  CAS  Google Scholar 

  37. Fu X, Xiao Y, Hu K, Wang J, Lei J, Zhou C. Thermosetting solid–solid phase change materials composed of poly(ethylene glycol)-based two components: flexible application for thermal energy storage. Chem Eng J. 2016;291:138–48.

    Article  CAS  Google Scholar 

  38. Wu B, Fu W, Kong B, Hu K, Zhou C, Lei J. Preparation and characterization of stearic acid/polyurethane composites as dual phase change material for thermal energy storage. J Therm Anal Calorim. 2018;132:907–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Jiang, L., Zhao, Y. et al. Preparation and characterization of a novel form-stable phase change material for thermal energy storage. J Therm Anal Calorim 143, 2945–2952 (2021). https://doi.org/10.1007/s10973-020-09486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09486-1

Keywords

Navigation