Skip to main content
Log in

Influence of temperature and BN nanoparticles on UV, thermal and dark curing of a cycloaliphatic epoxy resin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of boron nitride (BN) nanoparticles on cationic photopolymerization of an epoxy resin at different temperatures was investigated employing photo-DSC. A difunctional cycloaliphatic epoxy resin was polymerized in the presence of triarylsulfonium hexafluoroantimonate salts (cationic photoinitiator). BN-epoxy dispersions containing 5 mass% of BN were obtained by sonication. The epoxy conversion during UV irradiation was determined at seven temperatures, from 30 to 90 °C. The conversion reached was strongly dependent on temperature, and lower conversions were obtained in the presence of BN. After the UV curing, the samples were thermally postcured by dynamic heating in the DSC. The thermal postcuring shows two exothermal peaks, being the main one dependent on the temperature of the previous UV curing and on the composition. The total achieved conversion (65–77%) is lower for the samples containing BN compared to neat epoxy. The UV-irradiated samples at 40 °C reached conversions between 24 and 36%; afterward, they were kept under isothermal dark curing (40 °C) up to 1 month leading to significant conversion increases, independently of the composition and reaching a final conversion between 60 and 70%. DMTA measurements of dark-cured specimens evidence a heterogeneous epoxy matrix, thus needing higher postcuring temperatures to get homogeneity. The Tg of the epoxy matrix is reduced in the presence of BN nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Javadi A, Mehr HS, Sobani M, Soucek MD. Cure-on-command technology: a review of the current state of the art. Prog Org Coat. 2016;100:2–31.

    Article  CAS  Google Scholar 

  2. Jin F, Li X, Park S. Synthesis and applications of epoxy resins: a review. J Ind Eng Chem. 2015;29:1–11.

    Article  CAS  Google Scholar 

  3. Vidil T, Tournilhac F, Musso S, Robisson A, Leibler L. Control of reactions and network structures of epoxy thermosets. Prog Polym Sci. 2016;62:126–79.

    Article  CAS  Google Scholar 

  4. Bian X, Tuo R, Yang W, Zhang Y, Xie Q, Zha J, Lin J, He S. Mechanical, thermal, and electrical properties of BN–epoxy composites modified with carboxyl-terminated butadiene nitrile liquid rubber. Polymers. 2019;11:1548–61.

    Article  CAS  Google Scholar 

  5. Hou J, Li G, Yang N, Qin L, Grami ME, Zhang Q, Wang N, Qu X. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv. 2014;4:44282–90.

    Article  CAS  Google Scholar 

  6. Wang H, Chen P, Sun J, Kuang XJ, Yao ZK. Study on high thermal conductive BN/epoxy resin composites. Appl Mech Mater. 2012;105–107:1751–4.

    Google Scholar 

  7. Isarn I, Massagués L, Ramis X, Serra A, Ferrando F. New BN-epoxy composites obtained by thermal latent cationic curing with enhanced thermal conductivity. Compos A. 2017;103:35–47.

    Article  CAS  Google Scholar 

  8. Yu C, Zhang J, Li Z, Tian W, Wang L, Luo J, Li Q, Fan X, Yao Y. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos A. 2017;98:25–31.

    Article  CAS  Google Scholar 

  9. Wazzan A, Al-Turaif HA, Abdelkader AF. Influence of submicron TiO2 particles on the mechanical properties and fracture characteristics of cured epoxy resin. Polym-Plast Technol. 2006;45:1155–61.

    Article  CAS  Google Scholar 

  10. Nayak SK, Mohanty S, Nayak SK. Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application. SN Appl Sci. 2019;1:337–52.

    Article  Google Scholar 

  11. Zhou W, Zuo J, Zhang X, Zhou A. Thermal, electrical and mechanical properties of hexagonal boron nitride-reinforced epoxy composites. J Compos Mater. 2014;48:2517–26.

    Article  CAS  Google Scholar 

  12. Wattanakul K, Manuspiya H, Yanumet N. Thermal conductivity and mechanical properties of BN-filled epoxy composite: effects of filler content, mixing conditions and BN agglomerate size. J Compos Mater. 2011;45:1967–80.

    Article  CAS  Google Scholar 

  13. Han S, Meng Q, Qiu Z, Osman A, Cai R, Yu Y, Liu T, Araby S. Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites. Polymer. 2019;184:121884–92.

    Article  CAS  Google Scholar 

  14. Jiang Y, Shi X, Feng Y, Li S, Zhou X, Xie X. Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride. Compos A. 2018;107:657–64.

    Article  CAS  Google Scholar 

  15. Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer. 2012;53:471–80.

    Article  CAS  Google Scholar 

  16. Cui M, Ren S, Chen J, Liu S, Zhang G, Zhao H, Wang L, Xue Q. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets. Appl Surf Sci. 2017;397:77–86.

    Article  CAS  Google Scholar 

  17. Teotia M, Chauhan M, Choudhary P, Soni RK. Photocured characteristics of fast photocurable acrylic formulations and investigations by differential photo calorimeter. J Therm Anal Calorim. 2019;137:133–41.

    Article  CAS  Google Scholar 

  18. Morancho JM, Fernández-Francos X, Ramis X, Salla JM, Serra A. Photocuring and thermal postcuring of a cycloaliphatic epoxide resin with a trithiol and a vinyl epoxy compound. J Therm Anal Calorim. 2015;121:389–95.

    Article  CAS  Google Scholar 

  19. Golaz B, Michaud V, Leterrier Y, Manson JAE. UV intensity temperature and dark-curing effects in cationic photo-polymerization of a cycloaliphatic epoxy resin. Polymer. 2012;53:2038–48.

    Article  CAS  Google Scholar 

  20. Harikrishna R. Photopolymerization kinetics of block polyether based terminal urethane methacrylate with/without cross-linker. Adv Polym Technol. 2014;33:21418–26.

    Google Scholar 

  21. Harikrishna R, Ponrathnam S, Tambe SS. Reaction kinetics and modeling of photoinitiated cationic polymerization of an alicyclic based diglycidyl ether. Nucl Instrum Methods Phys Res B. 2014;318:263–8.

    Article  CAS  Google Scholar 

  22. Voytekunas VY, Ng FL, Abadie MJM. Kinetics study of the UV-initiated cationic polymerization of cycloaliphatic diepoxide resins. Eur Polym J. 2008;44:3640–9.

    Article  CAS  Google Scholar 

  23. Morancho JM, Cadenato A, Fernández-Francos X, Salla JM, Ramis X. Isothermal kinetics of photopolymerization and thermal polymerization of bis-GMA/TEGDMA resins. J Therm Anal Calorim. 2008;92:513–22.

    Article  CAS  Google Scholar 

  24. Sipani V, Kirsch A, Scranton AB. Dark cure studies of cationic photopolymerizations of epoxides: characterization of kinetic rate constants at high conversions. J Polym Sci Part A Polym Chem. 2004;42:4409–16.

    Article  CAS  Google Scholar 

  25. Martin-Gallego M, Verdejo R, Lopez-Manchado MA, Sangermano M. Epoxy-graphene UV-cured nanocomposites. Polymer. 2011;52:4664–9.

    Article  CAS  Google Scholar 

  26. Sangermano M, Periolatto M, Signore V, Spena PR. Improvement of the water-vapor barrier properties of an UV-cured epoxy coating containing graphite oxide nanoplatelets. Prog Org Coat. 2017;103:152–5.

    Article  CAS  Google Scholar 

  27. Macan J, Brnardi I, Ivankovi M, Mencer HJ. DSC study of cure kinetics of DGEBA-based epoxy resin with poly(oxypropylene) diamine. J Therm Anal Calorim. 2005;81:369–73.

    Article  CAS  Google Scholar 

  28. Marta Sánchez-Cabezudo M, Prolongo MG, Salom C, Masegosa RM. Cure kinetics of epoxy resin and thermoplastic polymer. J Therm Anal Calorim. 2006;86:699–705.

    Article  Google Scholar 

  29. Morancho JM, Cadenato A, Ramis X, Morell M, Fernández-Francos X, Salla JM, Serra A. Unexpected differences between thermal and photoinitiated cationic curing of a diglycidyl ether of bisphenol A modified with a multiarm star poly(styrene)-b-poly(ε-caprolactone. Express Polym Lett. 2013;7:565–76.

    Article  CAS  Google Scholar 

  30. Scott TF, Cook WD, Forsythe JS. Photo-DSC cure kinetics of vinyl ester resins. I. Influence of temperature. Polymer. 2002;43:5839–45.

    CAS  Google Scholar 

  31. Chen Z, Webster DC. Study of the effect of hyperbranched polyols on cationic UV curable coating properties. Polym Int. 2007;56:754–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the Ministry of Economy and Competitiveness of Spain (Project MAT2016-78825-C2-2-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Prolongo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arribas, C., González-González, A., Prolongo, M.G. et al. Influence of temperature and BN nanoparticles on UV, thermal and dark curing of a cycloaliphatic epoxy resin. J Therm Anal Calorim 142, 617–627 (2020). https://doi.org/10.1007/s10973-020-09441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09441-0

Keywords

Navigation