Skip to main content
Log in

Influence of wall slip and jump in wall temperature on transport of heat energy in hybrid nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

It is the first time that partial slip and jump in wall temperature during transfer of thermal energy in hybrid nanofluid are considered simultaneously. Modeling of a considered phenomenon is done, and numerical treatment is done by FEM in order to analyze the impact of partial slip and jump in wall temperature on the transport of energy. It is observed that wall momentum diffuses into nanofluid faster than its diffusion in hybrid nanofluid in the presence of partial slip. Thermal performance of hybrid mononanofluid is greater than that of nanofluid. It is also noted that hybrid nanofluid exerts less shear stress than the shear stress that of mononanofluid. Hence, the use of hybrid nanofluid is beneficial in two ways (1) its thermal performance is higher than the base fluid or nanofluid and (2) the hybrid nanofluid exerts less shear stress on the wall. Therefore, the use of hybrid particles is recommended to optimize the thermal performance of the working fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sheikholeslami M, Bandpy MG, Ashorynejad HR. Lattice Boltzmann method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity. Phys A Phys A Stat Mech. 2015;432:58–70.

    Article  CAS  Google Scholar 

  2. Sheikholeslami M. Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A. 2017;381(5):494–503.

    Article  CAS  Google Scholar 

  3. Saleem S, Nadeem S, Haq RU. Buoyancy and metallic particle effects on an unsteady water-based fluid flow along a vertically rotating cone. Eur Phys J Plus. 2014;129(10):213.

    Article  Google Scholar 

  4. Nadeem S, Khan AU, Saleem S. A comparative analysis on different nanofluid models for the oscillatory stagnation point flow. Eur Phys J Plus. 2016;131(8):261.

    Article  Google Scholar 

  5. Abbas N, Saleem S, Nadeem S, Alderremy AA, Khan AU. On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results Phys. 2018;9:1224–32.

    Article  Google Scholar 

  6. Kandelousi MS. KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett. 2014;378(45):3331–9.

    Article  Google Scholar 

  7. Sheikholeslami M. Numerical approach for MHD \(Al_{2}O_{3}\)-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Method Appl Mech. 2019;344:306–18.

    Article  Google Scholar 

  8. Sheikholeslami M. Magnetic field influence on \(CuO\)\(H_{2}O\) nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrog Energy. 2017;42(31):19611–21.

    Article  CAS  Google Scholar 

  9. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    Article  CAS  Google Scholar 

  10. Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    Article  CAS  Google Scholar 

  11. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    Article  CAS  Google Scholar 

  12. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135(1):305–23.

    Article  CAS  Google Scholar 

  13. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on the thermal-hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim. 2019;45:50. https://doi.org/10.1007/s10973-019-08683-x.

    Article  CAS  Google Scholar 

  14. Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019;135:437.

    Article  Google Scholar 

  15. Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering \(Al_{2}O_{3}\) nanoparticles. J Therm Anal Calorim. 2019;136(6):2477–85.

    Article  CAS  Google Scholar 

  16. Nguyen TK, Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Mouli KV, Tlili I. Design of heat exchanger with combined turbulator. J Therm Anal Calorim. 2019;139:649.

    Article  Google Scholar 

  17. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;1(122):643–50.

    Article  Google Scholar 

  18. Sheikholeslami M, Darzi M, Li Z. Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf. 2018;1(125):1087–95.

    Article  Google Scholar 

  19. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq RU. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;1(136):1233–40.

    Article  Google Scholar 

  20. Nadeem S, Hayat T, Khan AU. Numerical study of 3D rotating hybrid SWCNT-MWCNT flow over a convectively heated stretching surface with heat generation/absorption. Phys Scr. 2019;94(7):075202.

    Article  CAS  Google Scholar 

  21. Nadeem S, Abbas N, Khan AU. Characteristics of three dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder. Results Phys Mech. 2018;8:829–35.

    Article  Google Scholar 

  22. Iqbal Z, Akbar NS, Azhar E, Maraj EN. Performance of hybrid nanofluid (\(Cu\)\(CuO\)/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. Alex Eng J. 2018;57(3):1943–54.

    Article  Google Scholar 

  23. Nadeem S, Abbas N. On both MHD and slip effect in micropolar hybrid nanofluid past a circular cylinder under stagnation point region. Can J Phys. 2018;97(4):392–9.

    Article  Google Scholar 

  24. Sheikholeslami M, Mehryan SA, Shafee A, Sheremet MA. Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol. 2019;277:388–96.

    CAS  Google Scholar 

  25. Hayat T, Imtiaz M, Alsaedi A. Partial slip effects in flow over nonlinear stretching surface. Appl Math Mech Engl Ed. 2015;36:1513–26.

    Article  Google Scholar 

  26. Ariel PD, Hayat T, Asghar S. The flow of an elastico-viscous fluid past a stretching sheet with partial slip. Acta Mech. 2006;187(1–4):29–35.

    Article  Google Scholar 

  27. Besthapu P, Haq RU, Bandari S, Al-Mdallal QM. Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface. Neural Comput Appl. 2019;31(1):207–17.

    Article  Google Scholar 

  28. Chamkha AJ, Rashad AM, Armaghani T, Mansour MA. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu-water nanofluid. J Therm Anal Calorim. 2018;132(2):1291–306.

    Article  CAS  Google Scholar 

  29. Hayat T, Ijaz M, Qayyum S, Ayub M, Alsaedi A. Mixed convective stagnation point flow of nanofluid with Darcy-Fochheimer relation and partial slip. Results Phys. 2018;1(9):771–8.

    Article  Google Scholar 

  30. Jawad M, Shah Z, Islam S, Bonyah E, Khan AZ. Darcy-Forchheimer flow of MHD nanofluid thin film flow with Joule dissipation and Navier’s partial slip. J Phys Commun. 2018;2(11):115014.

    Article  CAS  Google Scholar 

  31. Seth GS, Bhattacharyya A, Mishra MK. Study of partial slip mechanism on free convection flow of viscoelastic fluid past a nonlinear stretching sheet. Comput Therm Sci. 2019;11(1–2):950.

    Google Scholar 

Download references

Acknowledgements

Author would like to express his sincere thanks to the Deanship of Scientific Research at Majmaah University, Saudi Arabia, for funding this research work under Grant No. R-1441-70

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayer Obaid Alharbi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, S.O. Influence of wall slip and jump in wall temperature on transport of heat energy in hybrid nanofluid. J Therm Anal Calorim 144, 847–854 (2021). https://doi.org/10.1007/s10973-020-09428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09428-x

Keywords

Navigation