Skip to main content
Log in

Numerical study of thermo-hydraulic characteristics for forced convective flow through wavy channel at different Prandtl numbers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work numerically investigates the thermo-fluidic and entropy generation characteristics for laminar forced convective flow through wavy channel at different Prandtl number (Pr). Results are presented for the following range of parameters: Reynolds number \(5 \le \text{Re} \le 200\), Prandtl number \(0.72 \le \Pr \le 100\), dimensionless amplitude \(0.3 \le \alpha \le 0.7\) and dimensionless wavelength \(0.5 \le \lambda \le 1.5\). It is observed that with increase in Pr, the thickness of the thermal boundary layer at trough region decreases slowly for smaller Re, whereas at higher Re, the rate of decrement is higher. The average Nusselt number increases with Pr for all amplitude, wavelength and Reynolds number. The relative heat transfer enhancement compared to equivalent plane channel is presented in terms of enhancement ratio (ER), and it shows a non-monotonic variation of ER with Pr at lower Re and a monotonic one at higher Re. The combined alteration of rate of heat transfer and pressure drop as compared to plane channel is enumerated by performance factor (PF), and the variation of PF with Pr shows non-monotonic behaviour at lower Re and monotonic one at higher Re. The variation of PF shows non-monotonic variation with Re for higher Pr and for smaller wavelength, whereas it monotonically decreases for all Pr at higher wavelength. Thermal entropy generation contribution is higher over the viscous one for all the cases considered. The local thermal entropy generation distribution varies with Re, Pr and geometrical configuration of the channel. For smaller amplitude (α = 0.3), the total entropy generation is minimum in the considered range of Re and Pr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(A\) :

Amplitude (m)

Be:

Bejan number (–)

C p :

Specific heat (J kg−1 K−1)

ER:

Enhancement ratio (–)

k :

Thermal conductivity (Wm−1 K−1)

L :

Inlet half height (m)

\(N^{\prime \prime \prime }\) :

Dimensionless local entropy generation (–)

\(N\) :

Dimensionless total entropy generation (–)

Nu:

Nusselt number (–)

\(\overline{\text{Nu}}\) :

Average Nusselt number (–)

PF:

Performance factor (–)

Pr:

Prandtl number (–)

Re:

Reynolds number (–)

s :

Wavy profile (m)

\(S^{\prime \prime \prime }\) :

Local entropy generation rate (W K−1 m3)

T :

Temperature (K)

u, v :

x and y-velocity component (m s−1)

U, V :

Dimensionless x and y velocity (–)

X, Y :

Dimensionless coordinate (–)

\(\alpha\) :

Dimensionless amplitude (–)

ρ :

Density (kg m−3)

µ :

Dynamic viscosity (kg m−1 s−1)

θ :

Dimensionless temperature (–)

\(\varPhi\) :

Irreversibility distribution ratio (–)

avg:

Average

e:

End

in:

Inlet

s:

Start

w:

Wall

References

  1. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2019;135:1009–19.

    CAS  Google Scholar 

  2. Menni Y, Azzi A, Chamkha A. Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path: a review. J Therm Anal Calorim. 2019;135:1951–76.

    CAS  Google Scholar 

  3. Hosseinirad E, Hormozi F. Thermal performance enhancement in a miniature channel using different passive methods. J Therm Anal Calorim. 2019;135:1849–61.

    CAS  Google Scholar 

  4. Gawande VB, Dhoble AS, Zodpe DB. Effect of roughness geometries on heat transfer enhancement in solar thermal systems—a review. Renew Sustain Energy Rev. 2014;32:347–78.

    Google Scholar 

  5. Kareem ZS, Mohd Jaafar MN, Lazim TM, Abdullah S, Abdulwahid AF. Passive heat transfer enhancement review in corrugation. Exp Therm Fluid Sci. 2015;68:22–38.

    Google Scholar 

  6. Kurtulmuş N, Sahin B. A review of hydrodynamics and heat transfer through corrugated channels. Int Commun Heat Mass Transf. 2019;108:104307.

    Google Scholar 

  7. Mousavi SM, Biglarian M, Darzi AAR, Farhadi M, Afrouzi HH, Toghraie D. Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08650-6.

    Article  Google Scholar 

  8. Khoshvaght-Aliabadi M, Ariana H, Khaligh SF, Salami M. Effects of delta winglets on performance of wavy plate-fin in PFHEs: nanofluid as heat transfer media. J Therm Anal Calorim. 2018;131:1625–40.

    CAS  Google Scholar 

  9. Bhowmick D, Randive PR, Pati S. Effect of thickness of porous layer on thermo-hydraulic characteristics and entropy generation in a partially porous wavy channel. In: Biswal B, Sarkar B, Mahanta P, editors. Advances in mechanical engineering., Lecture notes in mechanical engineeringSingapore: Springer; 2020. https://doi.org/10.1007/978-981-15-0124-1_13.

    Chapter  Google Scholar 

  10. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    CAS  Google Scholar 

  11. Boruah MP, Pati S, Randive PR. Implication of fluid rheology on the hydrothermal and entropy generation characteristics for mixed convective flow in a backward facing step channel with baffle. Int J Heat Mass Transf. 2019;137:138–60.

    Google Scholar 

  12. Boruah MP, Randive PR, Pati S. Hydrothermal performance and entropy generation analysis for mixed convective flows over a backward facing step channel with baffle. Int J Heat Mass Transf. 2019;125:525–42.

    Google Scholar 

  13. Javadi H, Mousavi Ajarostaghi SS, Pourfallah M, Zaboli M. Performance analysis of helical ground heat exchangers with different configurations. Appl Therm Eng. 2019;154:24–36.

    Google Scholar 

  14. Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2018;131:1757–66.

    CAS  Google Scholar 

  15. Feizabadi A, Khoshvaght-Aliabadi M, Rahimi AB. Experimental evaluation of thermal performance and entropy generation inside a twisted U-tube equipped with twisted-tape inserts. Int J Therm Sci. 2019;145:106051.

    Google Scholar 

  16. Akbarzadeh M, Rashidi S, Bovand M, Ellahi R. A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J Mol Liq. 2016;220:1–13.

    CAS  Google Scholar 

  17. Esfahani JA, Akbarzadeh M, Rashidi S, Rosen MA, Ellahi R. Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. Int J Heat Mass Transf. 2017;109:1162–71.

    CAS  Google Scholar 

  18. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94.

    CAS  Google Scholar 

  19. Akbarzadeh M, Rashidi S, Karimi N, Omar N. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2019;135:177–94.

    CAS  Google Scholar 

  20. Singh S. Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater. Renew Energy. 2020;145:1361–87.

    Google Scholar 

  21. Lin W, Ren H, Ma Z. Mathematical modelling and experimental investigation of solar air collectors with corrugated absorbers. Renew Energy. 2020;145:164–79.

    Google Scholar 

  22. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2019;135:551–63.

    CAS  Google Scholar 

  23. Akbarzadeh M, Rashidi S, Karimi N, Ellahi R. Convection of heat and thermodynamic irreversibilities in two-phase, turbulent nanofluid flows in solar heaters by corrugated absorber plates. Adv Powder Technol. 2018;29:2243–54.

    CAS  Google Scholar 

  24. Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for thermal analysis of heat exchangers—a review. Int J Therm Sci. 2015;90:150–72.

    Google Scholar 

  25. Mohanraj M, Gunasekar N, Velmurugan V. Comparison of energy performance of heat pumps using a photovoltaic-thermal evaporator with circular and triangular tube configurations. Build Simul. 2016;9:27–41.

    Google Scholar 

  26. Kumar RA, Babu BG, Mohanraj M. Thermodynamic performance of forced convection solar air heaters using pin–fin absorber plate packed with latent heat storage materials. J Therm Anal Calorim. 2016;126:1657–78.

    Google Scholar 

  27. Yerdesh Y, Abdulina Z, Aliuly A, Belyayev Y, Mohanraj M, Kaltayev A. Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates. Renew Energy. 2020;145:1222–34.

    CAS  Google Scholar 

  28. Arun KR, Kunal G, Srinivas M, Kumar CSS, Mohanraj M, Jayaraj S. Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage. Energy. 2020;192:116697.

    Google Scholar 

  29. Rush TA, Newell TA, Jacobi AM. An experimental study of flow and heat transfer in sinusoidal wavy passages. Int J Heat Mass Transf. 1999;42:1541–53.

    CAS  Google Scholar 

  30. Wang CC, Chen CK. Forced convection in a wavy-wall channel. Int J Heat Mass Transf. 2002;45:2587–95.

    Google Scholar 

  31. Pati S, Mehta SK, Borah A. Numerical investigation of thermo-hydraulic transport characteristics in wavy channels: comparison between raccoon and serpentine channels. Int Commun Heat Mass Transf. 2017;88:171–6.

    Google Scholar 

  32. Mehta SK, Pati S. Analysis of thermo-hydraulic performance and entropy generation characteristics for laminar flow through triangular corrugated channel. J Therm Anal Calorim. 2019;136:49–62.

    CAS  Google Scholar 

  33. Singh V, Haridas D, Srivastava A. Experimental study of heat transfer performance of compact wavy channel with nanofluids as the coolant medium: real time non-intrusive measurements. Int J Therm Sci. 2019;145:105993.

    CAS  Google Scholar 

  34. Kareem A, Rahim A, Talib A, Acosta A, Thariq M, Sultan H, et al. Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer. Energy. 2020;190:116294.

    Google Scholar 

  35. Ould-Rouiss M, Redjem-Saad L, Lauriat G, Mazouz A. Effect of Prandtl number on the turbulent thermal field in annular pipe flow. Int Commun Heat Mass Transf. 2010;37:958–63.

    Google Scholar 

  36. Nath D, Raju BHS, Pati S. Effect of Prandtl number on thermo-fluidic transport characteristics for mixed convection past a sphere. Int Commun Heat Mass Transf. 2018;98:191–9.

    Google Scholar 

  37. Rahman MM, Parvin S, Rahim NA, Islam MR, Saidur R, Hasanuzzaman M. Effects of Reynolds and Prandtl number on mixed convection in a ventilated cavity with a heat-generating solid circular block. Appl Math Model. 2012;36:2056–66.

    Google Scholar 

  38. Chatterjee D, Sinha C. Effect of Prandtl number and rotation on vortex shedding behind a circular cylinder subjected to cross buoyancy at subcritical Reynolds number. Int Commun Heat Mass Transf. 2016;70:1–8.

    Google Scholar 

  39. Mirzaei M, Davidson L, Sohankar A, Innings F. The effect of corrugation on heat transfer and pressure drop in channel flow with different Prandtl numbers. Int J Heat Mass Transf. 2013;66:164–76.

    Google Scholar 

  40. Kumar A, Dhiman A, Baranyi L. Fluid flow and heat transfer around a confined semi-circular cylinder: onset of vortex shedding and effects of Reynolds and Prandtl numbers. Int J Heat Mass Transf. 2016;102:417–25.

    Google Scholar 

  41. Shyam R, Chhabra RP. Effect of Prandtl number on heat transfer from tandem square cylinders immersed in power-law fluids in the low Reynolds number regime. Int J Heat Mass Transf. 2013;57:742–55.

    Google Scholar 

  42. García A, Vicente PG, Viedma A. Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers. Int J Heat Mass Transf. 2005;48:4640–51.

    Google Scholar 

  43. Selimefendigil F, Oztop HF, Mahian O. Effects of a partially conductive partition in MHD conjugate convection and entropy generation for a horizontal annulus. J Therm Anal Calorim. 2020;139:1537–51.

    CAS  Google Scholar 

  44. Bondarenko DS, Sheremet MA, Oztop HF, Ali ME. Impacts of moving wall and heat-generating element on heat transfer and entropy generation of Al2O3/H2O nanofluid. J Therm Anal Calorim. 2019;136:673–86.

    CAS  Google Scholar 

  45. Sekrani G, Poncet S, Proulx P. Conjugated heat transfer and entropy generation of Al2O3–water nanofluid flows over a heated wall-mounted obstacle. J Therm Anal Calorim. 2019;135:963–79.

    CAS  Google Scholar 

  46. Akbarzadeh M, Rashidi S, Esfahani JA. Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a wavy channel. Appl Therm Eng. 2017;116:278–91.

    Google Scholar 

  47. Pati S, Som SK, Chakraborty S. Thermodynamic performance of microscale swirling flows with interfacial slip. Int J Heat Mass Transf. 2013;57:397–401.

    Google Scholar 

  48. Pati S, Roy R, Deka N, Boruah MP, Nath M, Bhargav R, Randive PR, Mukherjee PP. Optimal heating strategy for minimization of peak temperature and entropy generation for forced convective flow through a circular pipe. Int J Heat Mass Transf. 2020;150:119318.

    Google Scholar 

  49. Magherbi M, Abbassi H, Brahim AB. Entropy generation at the onset of natural convection. Int J Heat Mass Transf. 2003;46:3441–50.

    Google Scholar 

  50. Khan I, Khan WA, Qasim M, Afridi I, Alharbi SO. Thermodynamic analysis of entropy generation minimization in thermally dissipating flow over a thin needle moving in a parallel free stream of two Newtonian fluids. Entropy. 2019;21:74. https://doi.org/10.3390/e21010074.

    Article  CAS  Google Scholar 

  51. Bejan A. A study of entropy generation in fundamental convective heat transfer. J Heat Transf. 1979;101:718–25.

    Google Scholar 

  52. Fluent I, ANSYS FLUENT 14: theory guide Fluent Inc, Canonsburg, PA, USA; 2012.

  53. Patankar SV. Numerical heat transfer and fluid flow. New York: McGraw-Hill; 1980.

    Google Scholar 

  54. Kumar A, Dhiman AK. Effect of a circular cylinder on separated forced convection at a backward-facing step. Int J Therm Sci. 2012;52:176–85. https://doi.org/10.1016/j.ijthermalsci.2011.09.014.

    Article  Google Scholar 

  55. Farhanieh B, Herman Č, Sundén B. Numerical and experimental analysis of laminar fluid flow and forced convection heat transfer in a grooved duct. Int J Heat Mass Transf. 1993;36:1609–17.

    CAS  Google Scholar 

  56. Esfahani JA, Shahabi PB. Effect of non-uniform heating on entropy generation for the laminar developing pipe flow of a high Prandtl number fluid. Energy Convers Manag. 2010;51:2087–97.

    Google Scholar 

  57. Mondal B, Mehta SK, Patowari PK, Pati S. Numerical study of mixing in wavy micromixers: comparison between raccoon and serpentine mixer. Chem Eng Process Process Intensif. 2019;136:44–61.

    CAS  Google Scholar 

  58. Mehta SK, Pati S. Effect on non-uniform heating on heat transfer characteristics in wavy channel. In: Fifth international conference on computational methods for thermal problems ThermaComp 2018, Indian Institute of Science, Bangalore, Fifth Edition, July 2018, pp. 498–501.

  59. Saikia A, Dalal A, Pati S. Thermo-hydraulic transport characteristics of non-Newtonian fluid flows through corrugated channels. Int J Therm Sci. 2018;129:201–8.

    Google Scholar 

  60. Pahlevaninejad N, Rahimi M, Gorzin M. Thermal and hydrodynamic analysis of non-Newtonian nanofluid in wavy microchannel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09229-x.

    Article  Google Scholar 

  61. Bejan A. Convective heat transfer. 4th ed. Hoboken, NJ: Wiley; 2013.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge TEQIP-III, NIT Silchar for its support throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar Mehta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S.K., Pati, S. Numerical study of thermo-hydraulic characteristics for forced convective flow through wavy channel at different Prandtl numbers. J Therm Anal Calorim 141, 2429–2451 (2020). https://doi.org/10.1007/s10973-020-09412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09412-5

Keywords

Navigation