Skip to main content
Log in

Numerical investigation on the effect of magnetic field on natural convection heat transfer from a pair of embedded cylinders within a porous enclosure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work examines the influence of magnetohydrodynamic field on natural convection phenomena inside a porous square enclosure with a pair of embedded hot circular cylinders. Numerical investigations are performed to understand the effects of interspacing distance between the embedded cylinders, Hartmann number, Rayleigh number and Darcy number on the thermal transport process and the total irreversibility generation. It is observed that the isotherm distribution is strongly affected by the presence of magnetic field although the distribution of streamlines remains independent of the strength of magnetic field. This underlines the fact that magnetic field strongly influences the heat transfer process and entropy generation characteristics. It reveals that the natural convection is suppressed in the presence of a higher magnetic field as evident from the reduction in Nusselt number. It is observed that an increase in the spacing between the cylinders increases the heat transfer rate, and moreover, the effect of the magnetic field on heat transfer is more pronounced at higher interspacing distance between the embedded cylinders. The heat transfer rate increases significantly with the increase in the permeability of the medium. The entropy generation rate is independent of the strength of applied magnetic field. Further, the contribution of the entropy generation owing to friction is found to be negligible in total irreversibility obtained at lower values of Rayleigh number irrespective of Darcy number. However, the contribution of irreversibility owing to heat transfer is found to be minimal at higher values of Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

B 0 :

Applied magnetic field (N m−1 A−1)

Be :

Bejan number

c p :

Specific heat capacity at constant pressure (J K−1)

d :

Diameter of the embedded cylinder (m)

D :

Dimensionless diameter of the embedded cylinder (dL−1)

Da :

Darcy number \((\kappa /L^{2} )\)

g :

Gravitational acceleration (m s−2)

h :

Heat transfer coefficient (W m−2 K−2)

Ha :

Hartmann number \(\left({{\text{B}_{0}\text{L}}\sqrt {{\sigma \mathord{\left/ {\vphantom {\sigma \mu }} \right. \kern-0pt} \mu }} } \right)\)

k :

Thermal conductivity (W m−1 K−1)

L :

Side length of the square enclosure (m)

Nu φ :

Local Nusselt number

\(\overline{\text{Nu}}\) :

Surface average Nusselt number

\(\overline{\text{Nu}_{\text{t}} }\) :

Time average Nusselt number

N θ,T :

Dimensionless volumetric thermal entropy generation

N Ψ,T :

Dimensionless volumetric viscous entropy generation

N mf,T :

Dimensionless volumetric magnetic field entropy generation

p :

Pressure (Pa)

P * :

Dimensionless pressure \(\left( {{{pL^{2} } \mathord{\left/ {\vphantom {{pL^{2} } {\rho \alpha^{2} }}} \right. \kern-0pt} {\rho \alpha^{2} }}} \right)\)

Pr :

Prandtl number, \(\left( {{{\mu c_{\text{p}} } \mathord{\left/ {\vphantom {{\mu c_{\text{p}} } k}} \right. \kern-0pt} k}} \right)\)

Ra :

Rayleigh number, \(\left( {{{g\beta \left( {T_{\text{h}} - T_{\text{c}} } \right)L^{3} \Pr } \mathord{\left/ {\vphantom {{g\beta \left( {T_{\text{h}} - T_{\text{c}} } \right)L^{3} \Pr } {\upsilon^{2} }}} \right. \kern-0pt} {\upsilon^{2} }}} \right)\)

s :

Distance between cylinders, (m)

S :

Dimensionless distance between cylinders, (s/L)

T c :

Minimum temperature, (K)

T h :

Maximum temperature, (K)

u, v :

Velocity components in x and y directions, (m s−1)

U*, V* :

Dimensionless velocity components in X and Y directions, \(\left( {{{uL} \mathord{\left/ {\vphantom {{uL} \alpha }} \right. \kern-0pt} \alpha },{{vL} \mathord{\left/ {\vphantom {{vL} \alpha }} \right. \kern-0pt} \alpha }} \right)\)

x, y :

Cartesian coordinates, (m)

X*, Y* :

Cartesian coordinates in dimensionless form, \(\left( {{x \mathord{\left/ {\vphantom {x L}} \right. \kern-0pt} L},{y \mathord{\left/ {\vphantom {y L}} \right. \kern-0pt} L}} \right)\)

\(\alpha\) :

Thermal diffusivity, (m2 s−1)

\(\beta\) :

Coefficient of thermal expansion, (K−1)

θ :

Dimensionless temperature, \(\left( {{{T - T_{\text{c}} } \mathord{\left/ {\vphantom {{T - T_{\text{c}} } {T_{\text{h}} - T_{\text{c}} }}} \right. \kern-0pt} {T_{\text{h}} - T_{\text{c}} }}} \right)\)

κ :

Permeability, (m2)

µ :

Dynamic viscosity, (N s m−2)

ν :

Kinematic viscosity, (m2 s−1)

σ :

Electrical conductivity, (S m−1)

ρ :

Fluid density, (kg m−3)

References

  1. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sust Energ Rev. 2015;43:164–77.

    CAS  Google Scholar 

  2. Arshad W, Ali HM. Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink. Int J Heat Mass Transf. 2017;107:995–1001.

    CAS  Google Scholar 

  3. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    CAS  Google Scholar 

  4. Arshad W, Ali HM. Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid. Int J Heat Mass Transf. 2017;110:248–56.

    CAS  Google Scholar 

  5. Khan MS, Abid M, Ali HM, Amber KP, Bashir MA, Javed S. Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Appl Therm Eng. 2019;148:295–306.

    CAS  Google Scholar 

  6. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    CAS  Google Scholar 

  7. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sust Energ Rev. 2019;103:556–92.

    CAS  Google Scholar 

  8. Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci. 2018;8(4):587.

    Google Scholar 

  9. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, Zubir MNM, Alehashem MS, Kazi SN, Dahari M. Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer. Energ Convers Manag. 2015;100:419–28.

    CAS  Google Scholar 

  10. Babar H, Ali HM. Airfoil shaped pin-fin heat sink: potential evaluation of ferric oxide and titania nanofluids. Energ Convers Manag. 2019;202:112194.

    Google Scholar 

  11. Han ZH, Yang B, Kim SH, Zachariah MR. Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology. 2007. https://doi.org/10.1088/0957-4484/18/10/105701.

    Article  PubMed  Google Scholar 

  12. Bruce JM. Natural convection through openings and its application to cattle building ventilation. J Agric Eng Res. 1978;23:151–67.

    Google Scholar 

  13. Lee CC, Wang DT, Choi WS. Design and construction of a compact vacuum furnace for scientific research. Rev Sci Instrum. 2006. https://doi.org/10.1063/1.2402910.

    Article  Google Scholar 

  14. Gromov BF, Belomitcev YS, Yefimov EI, Leonchuk MP, Martinov PN, Orlov YI. Use of lead-bismuth coolant in nuclear reactors and accelerator-driven systems. Nucl Eng Des. 1997;173:207–17.

    CAS  Google Scholar 

  15. Dutta S, Biswas AK, Pati S. Analysis of natural convection in a rhombic enclosure with undulations of the top wall-A numerical study. Int J Ambient Energy. 2019. https://doi.org/10.1080/01430750.2019.1630304.

    Article  Google Scholar 

  16. Nuwayhid RY, Shihadeh A, Ghaddar N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Convers Manag. 2005;46:1631–43.

    Google Scholar 

  17. Lee JM, Ha MY, Yoon HS. Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations. Int J Heat Mass Transf. 2010;53:5905–19.

    Google Scholar 

  18. Kim BS, Lee DS, Ha MY, Yoon HS. A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int J Heat Mass Transf. 2008;51:1888–906.

    CAS  Google Scholar 

  19. Park YG, Ha MY, Yoon HS. Study on natural convection in a cold square enclosure with a pair of hot horizontal cylinders positioned at different vertical locations. Int J Heat Mass Transf. 2013;65:696–712.

    Google Scholar 

  20. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2018;137:267–87.

    Google Scholar 

  21. Minea AA. Numerical studies on heat transfer enhancement in different closed enclosures heated symmetrically. J Therm Anal Calorim. 2015;121:711–20.

    CAS  Google Scholar 

  22. Dogonchi AS, Ismael MA, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2019;135:3485–97.

    CAS  Google Scholar 

  23. Mahapatra PS, De S, Ghosh K, Manna NK, Mukhopadhyay A. Heat transfer enhancement and entropy generation in a square enclosure in the presence of adiabatic and isothermal blocks. Numer Heat Transf Part A Appl. 2013;64(7):577–96.

    CAS  Google Scholar 

  24. Kolsi L, Kalidasan K, Alghamdi A, Borjini MN, Kanna PR. Natural convection and entropy generation in a cubical cavity with twin adiabatic blocks filled by aluminum oxide–water nanofluid. Numer Heat Transf Part A Appl. 2016;70(3):242–59.

    CAS  Google Scholar 

  25. Rashidi I, Kolsi L, Ahmadi G, Mahian O, Wongwises S, Abu-Nada E. Three-dimensional modelling of natural convection and entropy generation in a vertical cylinder under heterogeneous heat flux using nanofluids. Int J Num Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-12-2018-0731.

    Article  Google Scholar 

  26. Shuja S, Yilbas B, Iqbal M. Mixed convection in a square cavity due to heat generating rectangular body: effect of cavity exit port locations. Int J Num Methods Heat Fluid Flow. 2000;10(8):824–41.

    CAS  Google Scholar 

  27. Bhowmick D, Randive PR, Pati S, Agrawal H, Kumar A, Kumar P. Natural convection heat transfer and entropy generation from a heated cylinder of different geometry in an enclosure with non-uniform temperature distribution on the walls. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09054-2.

    Article  Google Scholar 

  28. Nield DA, Bejan A. Convection in porous media. New York: Springer; 2006.

    Google Scholar 

  29. Vafai K. Handbook of porous media. New York: Marcel Dekker; 2000.

    Google Scholar 

  30. Bejan A, Dincer I, Lorente S, Miguel AF, Reis AH. Porous and complex flow structures in modern technologies. New York: Springer; 2004.

    Google Scholar 

  31. Ingham DB, Pop I. Transport phenomena in porous media. Oxford: Pergamon; 1988.

    Google Scholar 

  32. Ramakrishna D, Basak T, Roy S, Pop I. Analysis of heatlines during natural convection within porous square enclosures: effects of thermal aspect ratio and thermal boundary conditions. Int J Heat Mass Transf. 2013;59:206–18.

    Google Scholar 

  33. Wu F, Zhou W, Ma X. Natural convection in a porous rectangular enclosure with sinusoidal temperature distributions on both side walls using a thermal non-equilibrium model. Int J Heat Mass Transf. 2015;85:756–71.

    Google Scholar 

  34. Zargartalebi H, Ghalambaz M, Khanafer K, Pop I. Unsteady conjugate natural convection in a porous cavity boarded by two vertical finite thickness walls. Int Commun Heat Mass Transf. 2017;81:218–28.

    Google Scholar 

  35. Motlagh SY, Taghizadeh S, Soltanipour H. Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by nanofluid using Buongiorno’s mathematical model. Adv Powder Technol. 2016;27:2526–40.

    Google Scholar 

  36. Dutta S, Biswas AK, Pati S. Natural convection heat transfer and entropy generation inside porous quadrantal enclosure with nonisothermal heating at the bottom wall. Numer Heat Transf Part A Appl. 2018;73:222–40.

    CAS  Google Scholar 

  37. Dutta S, Biswas AK, Pati S. Numerical analysis of natural convection heat transfer and entropy generation in a porous quadrantal cavity. Int J Num Methods Heat Fluid Flow. 2019;29:4826–49.

    Google Scholar 

  38. Pal GC, Goswami N, Pati S. Numerical investigation of unsteady natural convection heat transfer and entropy generation from a pair of cylinders in a porous enclosure. Numer Heat Transf Part A Appl. 2018;74:1323–41.

    Google Scholar 

  39. Sheremet MA, Oztop HF, Pop I. MHD natural convection in an inclined wavy cavity with corner heater filled with a nano-fluid. J Mag Magn Mater. 2016;416:37–47.

    CAS  Google Scholar 

  40. Cho CC. Influence of magnetic field on natural convection and entropy generation in Cu–water nanofluid-filled cavity with wavy surfaces. Int J Heat Mass Transf. 2016;101:637–47.

    CAS  Google Scholar 

  41. Bondareva NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater. Int J Heat Mass Transf. 2016;99:872–81.

    CAS  Google Scholar 

  42. Bhardwaj S, Dalal A, Pati S. Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure. Energy. 2015;79:467–81.

    Google Scholar 

  43. Meshram P, Bhardwaj S, Dalal A, Pati S. Effects of the inclination angle on natural convection heat transfer and entropy generation in a square porous enclosure. Numer Heat Transf Part A Appl. 2016;70:1271–96.

    CAS  Google Scholar 

  44. Datta P, Mahapatra PS, Ghosh K, Manna NK, Sen S. Heat transfer and entropy generation in a porous square enclosure in presence of an adiabatic block. Transp Porous Med. 2016;111:305–29.

    CAS  Google Scholar 

  45. Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int J Heat Mass Transf. 2017;113:796–805.

    CAS  Google Scholar 

  46. Dutta S, Goswami N, Biswas AK, Pati S. Numerical investigation of magnetohydrodynamic natural convection heat transfer and entropy generation in a rhombic enclosure filled with Cu-water nanofluid. Int J Heat Mass Transf. 2019;136:777–98.

    CAS  Google Scholar 

  47. Tayebi T, Chamkha AJ. Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder. J Therm Anal Calorim. 2019;139:2165–79.

    Google Scholar 

  48. Muthukumar S, Sureshkumar S, Chamkha AJ, Muthtamilselvan M, Prem E. Combined MHD convection and thermal radiation of nanofluid in a lid-driven porous enclosure with irregular thermal source on vertical sidewalls. J Therm Anal Calorim. 2019;138:583–96.

    CAS  Google Scholar 

  49. Li Z, Sheikholeslami M, Chamkha AJ, Raizah ZA, Saleem S. Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation. Comput Methods Appl Mech Eng. 2018;338:618–33.

    Google Scholar 

  50. Biswas N, Manna NK. Magneto-hydrodynamic Marangoni flow in bottom-heated lid-driven cavity. J Mol Liq. 2018;251:249–66.

    CAS  Google Scholar 

  51. Sathiyamoorthy M, Chamkha A. Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int J Therm Sci. 2010;49:1856–65.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from TEQIP-III, NIT Silchar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitambar R. Randive.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmick, D., Chakravarthy, S., Randive, P.R. et al. Numerical investigation on the effect of magnetic field on natural convection heat transfer from a pair of embedded cylinders within a porous enclosure. J Therm Anal Calorim 141, 2405–2427 (2020). https://doi.org/10.1007/s10973-020-09411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09411-6

Keywords

Navigation