Skip to main content
Log in

Thermochemistry and kinetics of the aspect of diammonium hydrogen phosphate precipitation in phosphoric acid solution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermochemical and kinetic studies of diammonium hydrogen phosphate precipitation in phosphoric acid with ammonia were followed using a microcalorimetry at 25 °C. The calculated thermogenesis curves for various molar ratios show one, two, or three peaks. The plot of the amount of heat measured by integrating the raw signal of the acid–basic reaction presents four domains labeled as ‘a,’ ‘b,’ ‘c,’ and ‘d.’ In ‘a’ and ‘b’ domains, no solid was observed. From the slopes of line segments, it was possible to determine the enthalpies of the first and second neutralization of phosphoric acid (− 57 kJ mol−1 and − 28 kJ mol−1, respectively). However, domains ‘d’ and ‘c’ correspond to precipitation of ammonium dihydrogen phosphate and diammonium hydrogen phosphate. The presence of these compounds was checked by X-ray diffraction analysis performed on the solid precipitated in these domains. The TG, DTG and DTA curves confirm, also, the existence of these solids. The partial order rate with respect to NH3 and to H3PO4 is equal to 1 and 0.5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stavanja MS, Curtin GM, Ayres PH, Bombick ER, Borgerding MF, Morgan WT, Garner CD, Pence DH, Swauger JE. Safety assessment of diammonium phosphate and urea used in the manufacture of cigarettes. Exp Toxicol Pathol. 2008;59(6):339–53.

    CAS  PubMed  Google Scholar 

  2. Stevenson T, Proctor RN. The secret and soul of Marlboro. Am J Public Health. 2008;98:1184–94.

    PubMed  PubMed Central  Google Scholar 

  3. Baker RR, Massey ED, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Toxicol. 2004;42:53–83.

    Google Scholar 

  4. Baker RR, Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part II: casing ingredients. Food Chem Toxicol. 2004;42:39–52.

    Google Scholar 

  5. Baker RR, Coburn S, Liu C. The pyrolytic formation of formaldehyde from sugars and tobacco. J Anal Appl Pyrolysis. 2006;77:12–21.

    CAS  Google Scholar 

  6. Marcilla A, Beltran MI, Gómez-Siurana A, Martinez-Castellanos I, Berenguer D, Pastor V, García AN. TGA/FTIR study of the pyrolysis of diammonium hydrogen phosphate–tobacco mixture. J Anal Appl Pyrol. 2015;112:48–55.

    CAS  Google Scholar 

  7. Dixon M, Lambing KSJI, Seeman JI. On the transfer of nicotine from tobacco to the smoker. A brief review of ammonia and “pH” factors. Tob Res. 2000;19:103–13.

    CAS  Google Scholar 

  8. Müller L, Roeper W. It ain’t necessarily so. Contrib Tob Res. 2000;19:51–4.

    Google Scholar 

  9. Suardana NPG, Ku MS, Lim JK. Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater Des. 2011;32:1990–9.

    CAS  Google Scholar 

  10. Chen G. In situ thermal condensation of glucose–diammonium phosphate in wood for fire and fungal decay protection. Wood Fiber Sci. 2009;41(2):105–16.

    CAS  Google Scholar 

  11. Xiuwen S, Jiechao Y, Xiaofeng R. Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus. Antiviral Res. 2010;85:346–53.

    Google Scholar 

  12. Gaan S, Sun G. Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym Degrad Stab. 2007;92:968–74.

    CAS  Google Scholar 

  13. Branca C, Di Blasi C. Semi-global mechanisms for the oxidation of diammonium phosphate impregnated wood. J Anal Appl Pyrol. 2011;91:97–104.

    CAS  Google Scholar 

  14. Liodakis S, Katsigiannis G, Lymperopoulou T. Ash properties of Pinus halepensis needles treated with diammonium phosphate. Thermochim Acta. 2007;453:136–46.

    CAS  Google Scholar 

  15. Nam S, Condon BD, Parikh DV, Zhao Q, Cintrón MS, Madison C. Effect of urea additive on the thermal decomposition of greige cotton nonwoven fabric treated with diammonium phosphate. Polym Degrad Stabil. 2011;96:2010–8.

    CAS  Google Scholar 

  16. Singhvi M, Jadhav A, Gokhale D. Supplementation of medium with diammonium hydrogen phosphate enhanced the d-lactate dehydrogenase levels leading to increased d-lactic acid productivity. Bioresour Technol. 2013;146:736–9.

    CAS  PubMed  Google Scholar 

  17. Trivedi SP, Singh P, Sethi N, Singh RK. Evaluation of hematotoxic effects of two commonly used fertilizers, diammonium phosphate and urea, on fish Clarias batrachus. Ecotoxicol Environ Safe. 1990;19:135–42.

    CAS  Google Scholar 

  18. Gargouri M, Chtara C, Charrock P, Nzihou A, El Feki H. Synthesis and physicochemical characterization of pure diammonium phosphate from industrial fertilizer. Ind Eng Chem Res. 2011;50(11):6580–4.

    CAS  Google Scholar 

  19. Di Blasi C, Branca C, Galgano A. Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis. Ind Eng Chem Res. 2007;46:430–8.

    Google Scholar 

  20. Zhang A, Nan Z. In situ microcalorimetric investigation on effects of surfactants on cluster-shaped Ni-doped Fe3O4 formation. J Therm Anal Calorim. 2018;132:859–68.

    CAS  Google Scholar 

  21. Belgacem B, Leveneur S, Chlendi M, Estel L, Bagane M. The aid of calorimetry for kinetic and thermal study. J Therm Anal Calorim. 2019;135:1891–8.

    CAS  Google Scholar 

  22. Brahim K, Antar K, Khattech I, Jemal M. Etude thermodynamiqueet cinétique de l’attaque de la fluorapatite par l’acide phosphorique. Ann Chim Sci Mater. 2006;31(5):611–20.

    CAS  Google Scholar 

  23. Brahim K, Khattech I, Dubès JP, Jemal M. Etude cinétique et thermodynamique de la dissolution de la fluarapatite dans l’acide phosphorique. Thermochim Acta. 2005;436:43–50.

    CAS  Google Scholar 

  24. Brahim K, Antar K, Khattech I, Jemal M. Effect of temperature on the attack of fluorapatite by a phosphoric acid solution. Sci Res Essay. 2008;3(1):35–9.

    Google Scholar 

  25. Zendah H, Khattech I, Jemal M. Thermochemical and kinetic studies of the acid attack of “B” type carbonate fluorapatites at different temperatures (25–55)°C. Thermochim Acta. 2013;565:46–51.

    CAS  Google Scholar 

  26. Antar K, Jemal M. Kinetics and thermodynamics of the attack of a phosphate ore by acid solutions at different temperatures. Thermochim Acta. 2008;474:32–5.

    CAS  Google Scholar 

  27. Brahim K, Soussi-Baatout A, Khattech I, Jemal M. Dissolution kinetics of fluorapatite in the hydrochloric acid solution. J Therm Anal Calorim. 2017;129:701–8.

    CAS  Google Scholar 

  28. Fertani-Gmati M, Brahim K, Khattech I, Jemal M. Thermochemistry and kinetics of silica dissolution in NaOH solutions: effect of the alkali concentration. Thermochim Acta. 2014;594:58–67.

    CAS  Google Scholar 

  29. Soussi-Baatout A, Brahim K, Khattech I, Kamoun N, Jemal M. Thermochemical and kinetic investigations of the phosphoric attack of Tunisian phosphate ore. J Therm Anal Calorim. 2018;131:3121–32.

    CAS  Google Scholar 

  30. Gmati-Ben Khaled H, Khattech I, Jemal M. Standard enthalpy of formation of disodium hydrogen phosphate hexahydrate and sodium diphosphate. Chem Thermodyn. 2011;43:521–6.

    CAS  Google Scholar 

  31. Gmati-Ben Khaled H, Khattech I, Jemal M. Standard enthalpy of formation of lithium diphosphate. J Chem Thermodyn. 2013;63:11–6.

    CAS  Google Scholar 

  32. Hill JO, Öjelund G, Wadsö I. Thermochemical results for “tris” as a test substance in solution calorimetry. J Chem Thermodyn. 1969;1:111–6.

    CAS  Google Scholar 

  33. Vanderzee CE, Waugh DH, Haas NC, Wigg D. The standard enthalpy of solution of NH4NO3 (c, IV) in water at 298.15 K. (A search for the standard thermodynamic state). J Chem Thermodyn. 1980;12:27–40.

    CAS  Google Scholar 

  34. Nichols N, Skold R, Wadso I. Testing of an automatic temperature recording system for an isoperibolic solution calorimeter. Chem Scr. 1976;9:110–3.

    CAS  Google Scholar 

  35. Magda A, Pode R, Muntean C, Medeleanu M, Popa A. Synthesis and characterization of ammonium phosphate fertilizers with boron. J Serb Chem Soc. 2010;75:951–63.

    CAS  Google Scholar 

  36. Parker B, Wagman D, Evans H. NBS Circ. 1971;500:246.

    Google Scholar 

  37. Magda A, Pode R. Studies on heat treated ammonium phosphates with boron. Rev Chim. 2010;61:957–60.

    CAS  Google Scholar 

  38. Magda A, Muntean C, Iovi A, Jurca M, Lupa L, Simon M, Pode V. Studies about ammonium phosphates fertilizers with boron added as boric acid. Rev Chim. 2009;60:226–30.

    CAS  Google Scholar 

  39. Radovet R, Iovi A, Stefanescu M, Pode R, Negrea P, Iovi C. Studies on the process of obtaining ammonium phosphates with microelements. Chem Bull Politehnica Univ Timişoara. 2000;45:67–73.

    CAS  Google Scholar 

  40. Iovi A, Iovi C, Negrea P. Chimia şi tehnologia îngrăşămintelor complexe. București: Politehnica Publishing House; 1999. p. 80.

    Google Scholar 

  41. Iovi A, Iovi C. Ecological technologies—the chemistry and technology of the technical phosphates. Ecological technologies. București: Politehnica Publishing House; 2004. p. 63.

    Google Scholar 

  42. Gómez-Siurana A, Marcilla A, Beltrán M, Berenguer D, Martínez-Castellanos I, Menargues S. TGA/FTIR study of tobacco and glycerol–tobacco mixtures. Thermochim Acta. 2013;573:146–57.

    Google Scholar 

  43. Gómez-Siurana A, Marcilla A, Beltrán M, Martínez I, Berenguer D, García-Martínez R, Hernández-Selva T. Thermogravimetric study of the pyrolysis of tobacco and several ingredients used in the fabrication of commercial cigarettes: effect of the presence of MCM-41. Thermochim Acta. 2011;523:161–9.

    Google Scholar 

  44. Gómez-Siurana A, Marcilla A, Beltrán M, Berenguer D, Martínez-Castellanos I, Catalá L, Menargues S. TGA/FTIR study of the MCM-41 catalytic pyrolysis of tobacco and tobaco–glycerol mixtures. Thermochim Acta. 2014;587:24–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Khattech.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahim, K., Rouissi, K., Soussi-Baatout, A. et al. Thermochemistry and kinetics of the aspect of diammonium hydrogen phosphate precipitation in phosphoric acid solution. J Therm Anal Calorim 143, 3173–3179 (2021). https://doi.org/10.1007/s10973-020-09399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09399-z

Keywords

Navigation