Skip to main content
Log in

Kinetics of glass transition, crystallization and soft magnetic properties of the Fe76.5Nb3B20Cu0.5 glassy alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry was used to investigate the non-isothermal crystallization kinetics of the Fe76.5Nb3B20Cu0.5 glassy alloys. The nanocrystallization products and soft magnetic properties as a function of annealing temperatures were also studied by using X-ray diffractometer and vibrating sample magnetometer. The activation energies for Eg, Ex, and Ep are equal to 499 ± 3, 558 ± 7, and 693 ± 2 kJ mol−1 by Kissinger method, respectively, and 512 ± 3, 571 ± 9, and 715 ± 2 kJ mol−1 estimated by Ozawa method, respectively. The results indicate that the glass transition process is easier than the nucleation and grain growth process, while the grain growth process is much difficult than the nucleation process. The local Avrami exponent n(x) varies with the crystallized volume fraction x, indicating that the crystallization process has different crystallization mechanisms. The n(x) ranging from 1.0 to 1.2 for 0.05 < x < 0.2 represents the growth of particles of appreciable initial volume. The 0.5 < n(x) < 1.0 for x ranging from 0.2 to 0.8 stands for the growth of a large number of the pre-existing nuclei. Isothermal annealing experiment indicates that the initial nanocrystallization product is α-Fe phase, and the final nanocrystallization products are composed of α-Fe, Fe2B and Fe3B phases. With increasing annealing temperature, both the saturation magnetization Ms and coercivity Hc are enhanced. High temperature annealing is found to weaken their soft magnetic properties, which is ascribed to the precipitation of boride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Duwez P, Lin SCH. Amorphous ferromagnetic phase in iron–carbon–phosphorus alloys. J Appl Phys. 1967;38:4096–7.

    Article  CAS  Google Scholar 

  2. Suzuki K, Makino A, Inoue A, Masumoto T. Low core losses of nanocrystalline Fe–M–B (M = Zr, Hf, or Nb) alloys. J Appl Phys. 1993;74:3316–22.

    Article  CAS  Google Scholar 

  3. Mizushima T, Makino A, Yoshida S, Inoue A. Compositional dependence of thermal stability and soft magnetic properties for Fe–Al–Ga–P–C–B glassy alloys. MRS Proc. 1998;554:1200–15.

    Article  Google Scholar 

  4. Inoue A, Zhang T, Takeuchi A. Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM = IV–VIII group transition metal) system. Appl Phys Lett. 1997;71:464–6.

    Article  CAS  Google Scholar 

  5. Liu DY, Sun WS, Zhang HF, Hu ZQ. Preparation, thermal stability and magnetic properties of Fe–Co–Ni–Zr–Mo–B bulk metallic glass. Intermetallics. 2004;12:1149–52.

    Article  CAS  Google Scholar 

  6. Pang S, Zhang T, Asami K, Inoue A. New Fe–Cr–Mo–(Nb, Ta)–C–B glassy alloys with high glass-forming ability and good corrosion resistance. Mater Trans. 2005;42:376–9.

    Article  Google Scholar 

  7. Pang SJ, Zhang T, Asami K, Inoue A. Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 2002;50:489–97.

    Article  CAS  Google Scholar 

  8. Inoue A, Shen B. Formation and soft magnetic properties of Fe–B–Si–Zr bulk glassy alloys with high saturation magnetization above 1.5 T. Mater Trans. 2002;43:2350–3.

    Article  CAS  Google Scholar 

  9. Suzuki K, Makino A, Inoue A, Masumoto T. Soft magnetic properties of nanocrystalline bcc Fe–Zr–B and Fe–M–B–Cu (M = transition metal) alloys with high saturation magnetization. J Appl Phys. 1998;70:6232–7.

    Article  Google Scholar 

  10. Herzer G, Vazquez M, Knobel M, Zhukov A. Round table discussion: present and future applications of nanocrystalline magnetic materials. J Magn Magn Mater. 2005;294:252–66.

    Article  CAS  Google Scholar 

  11. Xue L, Liu H, Dou L, Yang W. Soft magnetic properties and microstructure of Fe84−xNb2B14Cux nanocrystalline alloys. Mater Des. 2014;56:227–31.

    Article  CAS  Google Scholar 

  12. Jiao ZB, Li HX, Gao JE, Wu Y, Lu ZP. Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses. Intermetallics. 2011;19:1502–8.

    Article  CAS  Google Scholar 

  13. Liu Q, Mo J, Liu H, Xue L, Hou L. Effects of Cu substitution for Nb on magnetic properties of Fe-based bulk metallic glasses. J Non-Cryst Solids. 2016;443:108–11.

    Article  CAS  Google Scholar 

  14. Zhuang YX, Duan TF, Shi HY. Calorimetric study of non-isothermal crystallization kinetics of Zr60Cu20Al10Ni10 bulk metallic glass. J Alloys Compd. 2011;509:9019–25.

    Article  CAS  Google Scholar 

  15. Wang X, Deng L, Xie J, Liang D. Non-isothermal kinetic parameters and models of crystallization for amorphous Fe–Co–Nb–Cu–B alloys. Phys B. 2013;410:251–8.

    Article  CAS  Google Scholar 

  16. Blázquez JS, Conde CF, Conde A. Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater. 2005;53:2305–11.

    Article  Google Scholar 

  17. Hsiao A, Turgut Z, Willard MA, Selinger E, Laughlin DE. Crystallization and nanocrystallization kinetics of Fe-based amorphous alloys. MRS Proc. 1999;577:551–6.

    Article  CAS  Google Scholar 

  18. Qiao JC, Pelletier JM. Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). J Non-Cryst Solids. 2011;357:2590–4.

    Article  CAS  Google Scholar 

  19. Mao X, Xu F, Tang J, Gao W, Li S. Effects of Co-doping on the crystallization and magnetic properties of Cu-free nanocrystalline Fe–Nb–B alloys. J Magn Magn Mater. 2005;288:106–10.

    Article  CAS  Google Scholar 

  20. Makino A, Suzuki K, Inoue A, Masumoto T. Low core loss of a bcc Fe86Zr7B6Cu1 alloy with nanoscale grain size. Mater Trans JIM. 1991;32:551–6.

    Article  CAS  Google Scholar 

  21. Peng K, Tang YH, Hu AP, Li DY, Liu YQ. Non-isothermal crystallization kinetics of Fe85Hf7B7Cu1 amorphous alloy. J Mater Sci Eng. 2008;26:39–41 (in Chinese).

    CAS  Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–4.

    Article  CAS  Google Scholar 

  23. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–5.

    Article  CAS  Google Scholar 

  24. Wang HR, Gao YL, Hui XD, Chen Y, Min GH, Ye YF. Effect of cooling rate on crystallization of metallic Zr–Cu–Ni glass. J Alloys Compd. 2003;350:178–83.

    Article  CAS  Google Scholar 

  25. Torrens-Serra J, Rodríguez-Viejo J, Clavaguera-Mora MT. Nanocrystallization kinetics and glass forming ability of the Fe65Nb10B25 metallic alloy. Phys Rev B. 2007;76:214111.

    Article  Google Scholar 

  26. Yang K, Fan XH, Li B, Li YH, Wang X, Xu YY. Non-isothermal crystallization kinetics and isothermal crystallization kinetics in supercooled liquid region of Cu–Zr–Al–Y bulk metallic glass. Acta Metall Sin (Engl Lett). 2018;31:290–8.

    Article  CAS  Google Scholar 

  27. Cai AH, An WK, Luo Y, Li TL, Li XS, Xiong X, Liu Y. Glass forming ability, non-isothermal crystallization kinetics, and mechanical property of Zr61.5Al10.7Cu13.65Ni14.15 metallic glass. J Alloys Compd. 2010;490:642–6.

    Article  CAS  Google Scholar 

  28. Ribeiro RM, Biasi RSD, Santos DRD, Santos DSD. Nanocrystallization of Fe-based amorphous metallic alloys studied by non-isothermal and isothermal techniques. J Alloys Compd. 2009;483:495–8.

    Article  CAS  Google Scholar 

  29. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B. 1966;4:323–8.

    Article  CAS  Google Scholar 

  30. Lu W, Yan B, Huang WH. Complex primary crystallization kinetics of amorphous Finemet alloy. J Non-Cryst Solids. 2005;351:3320–4.

    Article  CAS  Google Scholar 

  31. Raval KG, Lad KN, Pratap A, Awasthi AM, Bhardwaj S. Crystallization kinetics of a multicomponent Fe-based amorphous alloy using modulated differential scanning calorimetry. Thermochim Acta. 2005;425:47–57.

    Article  CAS  Google Scholar 

  32. Mchenry ME, Johnson F, Okumura H, Ohkubo T, Ramanan VRV, Laughlin DE. The kinetics of nanocrystallization and microstructural observations in Finemet, Nanoperm and Hitperm nanocomposite magnetic materials. Scr. Mater. 2003;48:881–7.

    Article  CAS  Google Scholar 

  33. Santos DSD, Santos DRD. Crystallization kinetics of Fe–B–Si metallic glasses. J Non-Cryst Solids. 2002;304:56–63.

    Article  Google Scholar 

  34. Wang Y, Xu K, Li Q. Comparative study of non-isothermal crystallization kinetics between Fe80P13C7 bulk metallic glass and melt-spun glassy ribbon. J. Alloys Compd. 2012;540:6–15.

    Article  CAS  Google Scholar 

  35. Shaaban ER. Optical constants and fitted transmittance spectra of varies thickness of polycrystalline ZnSe thin films in terms of spectroscopic ellipsometry. J Alloys Compd. 2013;563:274–9.

    Article  CAS  Google Scholar 

  36. Shaaban ER, Kaid MA, Ali MGS. X-ray analysis and optical properties of nickel oxide thin films. J Alloys Compd. 2014;613:324–9.

    Article  CAS  Google Scholar 

  37. Zhu M, Yang F, Jian ZY, Yao LJ, Jin CQ, Nan RH, Chang FE. Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28, metallic glasses. J Therm Anal Calorim. 2018;132:173–80.

    Article  CAS  Google Scholar 

  38. Herzer G. Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans Magn. 1989;25:3327–9.

    Article  CAS  Google Scholar 

  39. He J, Guo HQ, Shen BG, He KY, Hu JF. Soft magnetic properties and giant magneto-impedance effect of Fe–Zr–Nb–B–Cu ribbons. J Phys Condens Matter. 1999;11:4251–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51301125, 51371133), the Key Laboratory Scientific Research Program of Education Department of Shaanxi Province, China (Grant No. 17JS055), and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JM5097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, M., Yao, L., Zhu, M. et al. Kinetics of glass transition, crystallization and soft magnetic properties of the Fe76.5Nb3B20Cu0.5 glassy alloys. J Therm Anal Calorim 143, 2911–2918 (2021). https://doi.org/10.1007/s10973-020-09393-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09393-5

Keywords

Navigation