Skip to main content
Log in

Immersogeometric thermal analysis of flows inside buildings with reconfigurable components

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The design and operation of energy sustainable buildings rely on the comprehensive understanding of how ventilation flows are influenced by different configurations. In this work, we present an immersogeometric framework for the thermal analysis of turbulent flows inside or around geometrically complex designs for this purpose. The framework utilizes a variational multiscale method to model the incompressible turbulent flows. We propose a streamline/upwind Petrov–Galerkin formulation for the advection–diffusion equation of energy balance and augment it with a discontinuity-capturing operator. Boundary representations (B-rep) of reconfigurable component designs are immersed into the background non-boundary-fitted fluid mesh, circumventing the labor-intensive and time-consuming boundary-fitted mesh generation process. Thermofluid analysis inside several building configurations is performed. The results demonstrate the potential of our immersogeometric framework in supporting the further investigations of energy-efficient sustainable buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. rhinoceros: http://www.rhino3d.com/

  2. grasshopper: http://www.grasshopper3d.com/

  3. ACIS: https://www.spatial.com/products/3d-acis-modeling

Abbreviations

\({\mathbf {x}}\) :

Physical coordinate

\(\pmb {\xi }\) :

Parametric coordinate

t :

Time

\({\mathbf {u}}\) :

Velocity of fluid

\(\rho\) :

Density of fluid

p :

Pressure of fluid

\(\mu\) :

Dynamic viscosity of fluid

\({\mathbf {f}}\) :

External body force

T :

Temperature of fluid

\(c_{\mathrm{p}}\) :

Specific heat of fluid

\(\kappa\) :

Heat conductivity of fluid

S :

Heat source

\(\pmb {\sigma }\) :

Cauchy stress rate

\(\pmb {\epsilon }\) :

Strain rate

q :

Heat flux

\({\mathbf {I}}\) :

Identity tensor

References

  1. Berardi U. A cross-country comparison of the building energy consumptions and their trends. Resour Conserv Recycl. 2017;123:230–41.

    Google Scholar 

  2. Petersen S, Svendsen S. Method for simulating predictive control of building systems operation in the early stages of building design. Appl Energy. 2011;88(12):4597–606.

    Google Scholar 

  3. Privara S, Širokỳ J, Ferkl L, Cigler J. Model predictive control of a building heating system: the first experience. Energy Build. 2011;43(2–3):564–72.

    Google Scholar 

  4. Ma J, Qin J, Salsbury T, Xu P. Demand reduction in building energy systems based on economic model predictive control. Chem Eng Sci. 2012;67(1):92–100.

    CAS  Google Scholar 

  5. Oldewurtel F, Parisio A, Jones CN, Gyalistras D, Gwerder M, Stauch V, Lehmann B, Morari M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2012;45:15–27.

    Google Scholar 

  6. Wetter M. A view on future building system modeling and simulation. Technical report, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2011.

  7. O’Donnell JT, Maile T, Rose C, Mrazovic N, Morrissey E, Regnier C, Parrish K, Bazjanac V. Transforming BIM to BEM: Generation of building geometry for the NASA Ames sustainability base BIM. Technical report, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2013.

  8. Xiong Q, Kong S-C. High-resolution particle-scale simulation of biomass pyrolysis. ACS Sustain Chem Eng. 2016;4(10):5456–61.

    CAS  Google Scholar 

  9. Yan J, Yan W, Lin S, Wagner GJ. A fully coupled finite element formulation for liquid–solid–gas thermo-fluid flow with melting and solidification. Comput Methods Appl Mech Eng. 2018;336:444–70.

    Google Scholar 

  10. Zhong H, Xiong Q, Zhu Y, Liang S, Zhang J, Niu B, Zhang X. CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis. Renew Energy. 2019;141:236–45.

    CAS  Google Scholar 

  11. Izadi A, Siavashi M, Xiong Q. Impingement jet hydrogen, air and CuH\(_2\)O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. Int J Hydrog Energy. 2019;44(30):15933–48.

    CAS  Google Scholar 

  12. Peskin CS. Flow patterns around heart valves: a numerical method. J Comput Phys. 1972;10(2):252–71.

    Google Scholar 

  13. Gilmanov A, Sotiropoulos F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys. 2005;207(2):457–92.

    Google Scholar 

  14. Choi J-I, Oberoi RC, Edwards JR, Rosati JA. An immersed boundary method for complex incompressible flows. J Comput Phys. 2007;224(2):757–84.

    Google Scholar 

  15. Mittal R, Dong H, Bozkurttas M, Najjar FM, Vargas A, von Loebbecke A. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J Comput Phys. 2008;227(10):4825–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Marcum DL, Gaither JA. Unstructured grid generation for aerospace applications. In: Salas MD, Anderson WK, editors. Computational aerosciences in the 21st century, vol. 8. Netherlands: Springer; 2000. p. 189–209.

    Google Scholar 

  17. Wang ZJ, Srinivasan K. An adaptive Cartesian grid generation method for ‘Dirty’ geometry. Int J Numer Meth Fluids. 2002;39:703–17.

    Google Scholar 

  18. Beall MW, Walsh J, Shephard MS. A comparison of techniques for geometry access related to mesh generation. Eng Comput. 2004;20:210–21.

    Google Scholar 

  19. Lee YK, Lim CK, Ghazialam H, Vardhan H, Eklund E. Surface mesh generation for dirty geometries by the Cartesian shrink-wrapping technique. Eng Comput. 2010;26:377–90.

    CAS  Google Scholar 

  20. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng. 2015;284:1005–53.

    PubMed  Google Scholar 

  21. Xu F, Schillinger D, Kamensky D, Varduhn V, Wang C, Hsu M-C. The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids. 2016;141:135–54.

    CAS  Google Scholar 

  22. Hsu M-C, Wang C, Xu F, Herrema AJ, Krishnamurthy A. Direct immersogeometric fluid flow analysis using B-rep CAD models. Comput Aided Geom Des. 2016;43:143–58.

    Google Scholar 

  23. Wang C, Xu F, Hsu M-C, Krishnamurthy A. Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces. Comput Aided Geom Des. 2017;52–53:190–204.

    PubMed  PubMed Central  Google Scholar 

  24. Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng. 2005;194:4135–95.

    Google Scholar 

  25. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR. Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech. 2014;54(4):1055–71.

    PubMed  PubMed Central  Google Scholar 

  26. Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS. Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech. 2015a;55:1211–25.

    PubMed  PubMed Central  Google Scholar 

  27. Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. Int J Numer Methods Biomed Eng. 2018;34(4):e2938.

    Google Scholar 

  28. Xu F, Moutsanidis G, Kamensky D, Hsu M-C, Murugan M, Ghoshal A, Bazilevs Y. Compressible flows on moving domains: stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling. Comput Fluids. 2017;158:201–20.

    Google Scholar 

  29. Xu F, Bazilevs Y, Hsu M-C. Immersogeometric analysis of compressible flows with application to aerodynamic simulation of rotorcraft. Math Models Methods Appl Sci. 2019a;29:905–38.

    Google Scholar 

  30. Hsu M-C, Wang C, Herrema AJ, Schillinger D, Ghoshal A, Bazilevs Y. An interactive geometry modeling and parametric design platform for isogeometric analysis. Comput Math Appl. 2015b;70:1481–500.

    Google Scholar 

  31. Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng. 2007a;197:173–201.

    Google Scholar 

  32. Bazilevs Y, Michler C, Calo VM, Hughes TJR. Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng. 2007b;196:4853–62.

    Google Scholar 

  33. Bazilevs Y, Michler C, Calo VM, Hughes TJR. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng. 2010;199:780–90.

    Google Scholar 

  34. Bazilevs Y, Yan J, De Stadler M, Sarkar S. Computation of the flow over a sphere at \(\text{ Re }= 3,700\): a comparison of uniform and turbulent inflow conditions. J Appl Mech. 2014;81(12):121003.

    Google Scholar 

  35. Xu S, Liu N, Yan J. Residual-based variational multi-scale modeling for particle-laden gravity currents over flat and triangular wavy terrains. Comput Fluids. 2019b;188:114–24.

    Google Scholar 

  36. Hsu M-C, Akkerman I, Bazilevs Y. Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions. Comput Mech. 2012;50:499–511.

    Google Scholar 

  37. Hsu M-C, Bazilevs Y. Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech. 2012;50:821–33.

    Google Scholar 

  38. Yan J, Korobenko A, Deng X, Bazilevs Y. Computational free-surface fluid-structure interaction with application to floating offshore wind turbines. Comput Fluids. 2016;141:155–74.

    Google Scholar 

  39. Yan J, Deng X, Korobenko A, Bazilevs Y. Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids. 2017a;158:157–66.

    Google Scholar 

  40. Yan J, Korobenko A, Tejada-Martínez AE, Golshan R, Bazilevs Y. A new variational multiscale formulation for stratified incompressible turbulent flows. Comput Fluids. 2017b;158:150–6.

    CAS  Google Scholar 

  41. Yan J, Lin S, Bazilevs Y, Wagner GJ. Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles. Comput Fluids. 2019;179:777–89.

    CAS  Google Scholar 

  42. Zhu Q, Yan J. A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl. 2019;. https://doi.org/10.1016/j.camwa.2019.07.034.

    Article  Google Scholar 

  43. Zhu Q, Xu F, Xu S, Hsu M-C, Yan J. An immersogeometric formulation for free-surface flows with application to marine engineering problems. Comput Methods Appl Mech Eng. 2019;. https://doi.org/10.1016/j.cma.2019.112748.

    Article  Google Scholar 

  44. Brooks AN, Hughes TJR. Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng. 1982;32:199–259.

    Google Scholar 

  45. Hughes TJR, Mallet M, Mizukami A. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng. 1986;54:341–55.

    Google Scholar 

  46. Johnson C. Numerical solution of partial differential equations by the finite element method. Sweden: Cambridge University Press; 1987.

    Google Scholar 

  47. Brenner SC, Scott LR. The mathematical theory of finite element methods. 2nd ed. Berlin: Springer; 2002.

    Google Scholar 

  48. Almeida RC, Galeão AC. An adaptive Petrov–Galerkin formulation for the compressible euler and Navier–Stokes equations. Comput Methods Appl Mech Eng. 1996;129(1):157–76.

    Google Scholar 

  49. Rispoli F, Saavedra R, Corsini A, Tezduyar TE. Computation of inviscid compressible flows with the V-SGS stabilization and YZ\(\beta\) shock-capturing. Int J Numer Meth Fluids. 2007;54:695–706.

    Google Scholar 

  50. Rispoli F, Saavedra R, Menichini F, Tezduyar TE. Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ\(\beta\) shock-capturing. J Appl Mech. 2009;76:021209.

    Google Scholar 

  51. Bazilevs Y, Hughes TJR. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids. 2007;36:12–26.

    CAS  Google Scholar 

  52. Schillinger D, Harari I, Hsu M-C, Kamensky D, Stoter SKF, Yu Y, Zhao Y. The non-symmetric nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Comput Methods Appl Mech Eng. 2016;309:625–52.

    Google Scholar 

  53. Esmaily-Moghadam M, Bazilevs Y, Hsia T-Y, Vignon-Clementel I E, Marsden A L. Modeling of Congenital Hearts Alliance (MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech. 2011;48:277–91.

    Google Scholar 

  54. Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method. J Appl Mech. 1993;60:371–5.

    Google Scholar 

  55. Jansen KE, Whiting CH, Hulbert GM. A generalized-\(\alpha\) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng. 2000;190:305–19.

    Google Scholar 

  56. Saad Y, Schultz M. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput. 1986;7:856–69.

    Google Scholar 

  57. Shakib F, Hughes TJR, Johan Z. A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis. Comput Methods Appl Mech Eng. 1989;75:415–56.

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (21406081) and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (17KJA530001). K. Hong thanks the support from QingLan Project of Jiangsu Province, China. These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wang, C., Hong, K. et al. Immersogeometric thermal analysis of flows inside buildings with reconfigurable components. J Therm Anal Calorim 143, 4107–4117 (2021). https://doi.org/10.1007/s10973-020-09387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09387-3

Keywords

Navigation