Skip to main content
Log in

CO2 adsorption on calcium silicate hydrate gel synthesized by double decomposition method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The calcium silicate hydrate gel (C–S–H) was synthesized by the double decomposition method because of the simplicity and the quickness of the procedure. The structure of the C–S–H gels after 1 week and 4 weeks in contact with the formation solution was studied through micro-Raman, Fourier transformed infrared spectroscopy and 29Si nuclear magnetic resonance. Simultaneous thermodifferential–thermogravimetric analysis and mass spectrometry (DTA/TG/MS) was used to identify the amount of calcium carbonate formed due to the reaction between the calcium and atmospheric CO2. With DTA/TG/MS, mass loss due to CO2 was observed to take place at temperatures below 400 °C, unidentified to date, which might be associated with the CO2 adsorbed on the C–S–H gel. Thus, in the TG analysis in the 300–430 °C range, both the loss of water due to the decomposition of the amorphous calcium carbonate and the loss of CO2 adsorbed on the gel must be considered. Additionally, polymerization of the gel and a decrease in the Ca/Si ratio was observed from the samples from 1 to 4 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Richardson IG. Model structures for C–(A)–S–H(I). Acta Crystallogr Sect. B. 2014;B70:903–23.

    Google Scholar 

  2. Richardson IG. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem Concr Res. 2004;34:1733–77.

    CAS  Google Scholar 

  3. Richardson IG. The calcium silicate hydrates. Cem Concr Res. 2008;38:137–58.

    CAS  Google Scholar 

  4. Grangeon S, Claret F, Linard Y, Chiaberge C. X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallogr Sect. B. 2013;B69:465–73.

    Google Scholar 

  5. Haas J, Nonat A. From C–S–H to C–A–S–H: experimental study and thermodynamic modelling. Cem Concr Res. 2015;68:124–38.

    CAS  Google Scholar 

  6. Garrault S, Nonat A. Hydrated layer formation on tricalcium and dicalcium silicate surfaces: experimental study and numerical simulations. Langmuir. 2001;17:8131–8.

    CAS  Google Scholar 

  7. Trapote-Barreira A, Cama J, Soler JM. Dissolution kinetics of C–S–H gel: flow-through experiments. Phys Chem Earth. 2014;70–71:17–31.

    Google Scholar 

  8. L’Hôpital E, Lothenbach B, Le Saout G, Kulik D, Scrivener K. Incorporation of aluminium in calcium-silicate-hydrates. Cem Concr Res. 2015;75:91–103.

    Google Scholar 

  9. Komarneni S, Breval E, Roy DM, Roy R. Synthesis and characterization of a 12.6Å calcium silicate hydrate. Cem Concr Res. 1986;16:580–6.

    CAS  Google Scholar 

  10. Chen JJ, Thomas JJ, Taylor HFW, Jennings HM. Solubility and structure of calcium silicate hydrate. Cem Concr Res. 2004;34:1499–519.

    CAS  Google Scholar 

  11. Sun GK, Young JF, Kirkpatrick RJ. The role of Al in C–S–H: nMR, XRD, and compositional results for precipitated samples. Cem Concr Res. 2006;36:18–29.

    CAS  Google Scholar 

  12. Baston GMN, Clacher AP, Heath TG, Hunter FMI, Smith V, Swanton SW. Calcium silicate hydrate (C–S–H) gel dissolution and pH buffering in a cementitious near field. Miner Mag. 2012;76:3045–53.

    Google Scholar 

  13. Hunnicutt W, Struble L, Mondal P. Effect of synthesis procedure on carbonation of calcium-silicate-hydrate. J Am Ceram Soc. 2017;100:3736–45.

    CAS  Google Scholar 

  14. Chang J, Fang Y. Quantitative analysis of accelerated carbonation products of the synthetic calcium silicate hydrate (C–S–H) by QXRD and TG/MS. J Therm Anal Calorim. 2015;119:57–62.

    CAS  Google Scholar 

  15. Blanco-Varela MT, Aguilera J, Trusilewicz L, Martínez-Ramírez S. Thaumasite formation in hydrated carbonated C3S pastes. Canadá: In XII International Congress of the Chemistry of Cement. Montreal; 2007.

    Google Scholar 

  16. Garbev K, Stemmermann P, Black L, Breen C, Yarwood J, Gasharova B. Structural Features of C–S–H(I) and its carbonation in air-a raman spectroscopic study, Part I: fresh phases. J Am Ceram Soc. 2007;90:900–7.

    CAS  Google Scholar 

  17. Black L, Breen C, Yarwood J, Garbev K, Temmermann P, Gasharova B. Structural features of C–S–H(i) and its carbonation in air-a raman spectroscopic study. part ii: carbonated phases. J Am Ceram Soc. 2007;90:908–17.

    CAS  Google Scholar 

  18. Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong X. Structure of calcium silicate hydrate (C–S–H): near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc. 1999;82:742–8.

    CAS  Google Scholar 

  19. Vidmer A, Sclauzero G, Pasquarello A. Infrared spectra of jennite and tobermorite from first-principles. Cem Concr Res. 2014;60:11–23.

    CAS  Google Scholar 

  20. Sáez del Bosque IF, Martín-Pastor M, Sobrados I, Martínez-Ramírez S, Blanco-Varela MT. Quantitative analysis of pure triclinic tricalcium silicate and C–S–H gels by 29Si NMR longitudinal relaxation time. Constr Build Mater. 2016;107:52–7.

    Google Scholar 

  21. Martín-Garrido M, Molina-Delgado MT, Martínez-Ramírez S. A comparison between experimental and theoretical Ca/Si ratios in C-S–H and C–S(A)–H gels. J Sol-Gel Sci Tech. 2019. https://doi.org/10.1007/s10971-019-05097-x.

    Article  Google Scholar 

  22. Wehrmeister U, Jacob DE, Soldati AL, Loges N, Häger T, Hofmeister W. Amorphous, nanocrystalline and crystalline calcium carbonates in biological materials. J Raman Spectrosc. 2011;42:926–35.

    CAS  Google Scholar 

  23. Martínez-Ramírez S, Sánchez-Cortés S, García-Ramos JV, Domingo C, Fortes C, Blanco-Varela MT. Micro-Raman spectroscopy applied to depth profiles of carbonates formed in lime mortar. Cem Concr Res. 2003;33:2063–8.

    Google Scholar 

  24. García Lodeiro I, Macphee DE, Palomo A, Fernández-Jiménez A. Effect of alkalis on fresh C-S-H gels. FT-IR analysis. Cem Concr Res. 2009;39:147–53.

    Google Scholar 

  25. Monasterio M, Gaitero JJ, Erkizia E, Guerrero Bustos AM, Miccio LA, Dolado JS, Cerveny S. Effect of addition of silica- and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C–S–H) gel. J Coll Interface Sci. 2015;450:109–18.

    CAS  Google Scholar 

  26. Zhang Z, Xie Y, Xu X, Pan H, Tang R. ransformation of amorphous calcium carbonate into aragonite. J Cryst Growth. 2012;343:62–7.

    CAS  Google Scholar 

  27. Morandeau AE, White CE. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium-silicate-hydrate gel. J Mater Chem A. 2015;3:8597–605.

    CAS  Google Scholar 

  28. Yang X, Cui C, Cui X, Tang G, Ma H. High-temperature phase transition and the activity of tobermorite. J Wuhan Univ Technol-Mat Sci Edit. 2014;29:298–301.

    CAS  Google Scholar 

  29. Sabeur H, Saillio M, Vincent J. Thermal stability and microstructural changes in 5 years aged cement paste subjected to high temperature plateaus up to 1000 & #xB0;C as studied by thermal analysis and X-ray diffraction. Heat Mass Transf. 2019;55:2483–501.

    CAS  Google Scholar 

  30. Stepkowska ET, Blanes JM, Franco F, Real C, Pérez-Rodríguez JL. Phase transformation on heating of an aged cement paste. Thermochim Acta. 2004;420:79–87.

    CAS  Google Scholar 

  31. Roosz C, Gaboreau S, Grangeon S, Prêt D, Montouillout V, Maubec N, Ory S, Blanc P, Vieillard P, Henocq P. Distribution of water in synthetic calcium silicate hydrates. Langmuir. 2016;32:6794–805.

    CAS  PubMed  Google Scholar 

  32. Rodríguez-Navarro C, Elert K, Ševčík R. Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation. Cryst Eng Comm. 2016;18:6594–607.

    Google Scholar 

  33. Smigelskyte A, Siauciunas R. Parameter influence on the rankinite binder paste and mortar accelerated carbonation curing. J Therm Anal Cal. 2019;138:2651–9.

    CAS  Google Scholar 

  34. Dambrauskas T, Baltakys K, Eisinas A. Formation and thermal stability of calcium silicate hydrate substituted with Al3+ ions in the mixtures with CaO/SiO2 = 1.5. J Therm Anal Calorim. 2018;131:501–12.

    CAS  Google Scholar 

  35. Pavlík Z, Trník A, Kulovaná T, Scheinherrová L, Rahhal V, Irassar E, Cerný R. DSC and TG Analysis of a blended binder based on waste ceramic powder and portland cement. Int J Thermophys. 2016;37:32–46.

    Google Scholar 

  36. Czoboly O, Lublóy E, Hlavika V, Balázs GL, Kéri O, Szilágyi IM. Fibers and fiber cocktails to improve fire resistance of concrete. J Therm Anal Calorim. 2017;128:1453–61.

    CAS  Google Scholar 

  37. Stepkowska ET. Simultaneous IR/TG study of calcium carbonate in two aged cement pastes. J Therm Anal Cal. 2006;84:175–80.

    CAS  Google Scholar 

  38. Stepkowska ET. Hypothetical transformation of Ca(OH)2 into CaCO3 in solid-state reactions of Portland Cement. J Therm Anal Cal. 2005;80:727–33.

    CAS  Google Scholar 

  39. Sauman Z. Carbonization of porous concrete and its main binding components. Cem Concr Res. 1971;1:645–62.

    Google Scholar 

  40. Thiery M, Villain G, Dangla P, Platret G. Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res. 2007;37:1047–58.

    CAS  Google Scholar 

  41. Morandeau A, Thiérya M, Dangla P. Investigation of the carbonation mechanism of CH and C–S–H in terms of kinetics, microstructure changes and moisture properties. Cem Concr Res. 2014;56:153–70.

    CAS  Google Scholar 

  42. Richardson IG. The nature of C–S–H in hardened cements. Cem Concr Res. 1999;29:1131–47.

    CAS  Google Scholar 

  43. Beaudoin JJ, Raki L, Alizadeh RA. 29Si MAS NMR study of modified C–S–H nanostructures. Cem Concr Compos. 2009;31:585–90.

    CAS  Google Scholar 

  44. Lippmaa E, Mägi M, Tarmak M, Wieker W, Grimmer ARA. A high resolution 29Si NMR study of the hydration of tricalciumsilicate. Cem Concr Res. 1982;12:597–602.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Comunidad de Madrid and European Social Fund, Program GEOMATERIALES-S-2013/MIT-2914 and MINECO under FIS2017-84318-R. M.M.G. thanks the European Social Fund for funding him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagrario Martínez-Ramírez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Garrido, M., Martínez-Ramírez, S. CO2 adsorption on calcium silicate hydrate gel synthesized by double decomposition method. J Therm Anal Calorim 143, 4331–4339 (2021). https://doi.org/10.1007/s10973-020-09374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09374-8

Keywords

Navigation