Skip to main content
Log in

An improved heat conduction analysis in swirling viscoelastic fluid with homogeneous–heterogeneous reactions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper studies an unsteady magnetohydrodynamic (MHD) Maxwell fluid flow on a rotating as well as a vertically moving disk in the presence of homogeneous–heterogeneous reactions. An improved heat conduction theory, namely Cattaneo–Christov heat flux, is implemented instead of classical Fourier’s law to analyze the thermal features. The problem is basically an extension of the well-known von Karman viscous pump problem to the situation where a disk is rotating. The leading equations of motion are converted into a set of nonlinear differential equations by using von Karman transformations. A Matlab-based scheme, namely bvp4c, which uses finite difference method, is employed for numerical integration. It is noted that the wall motion of the rotating disk performs a similar effect to that of suction/injection. Further, it is observed that by elevating thermal relaxation time parameter, the temperature field diminishes. Moreover, stronger rates of homogeneous and heterogeneous reactions cause to reduce the concentration profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(r,\varphi ,z\) :

Cylindrical coordinates

uvw :

Velocity components \(({\hbox {m s}}^{-1})\)

a(t):

Vertical distance \(\left( {\hbox {m}}\right)\)

\(\overset{\centerdot }{a}(t)\) :

Vertical velocity \(({\hbox {m s}}^{-1})\)

h :

Location of vertically moving disk \(\left( {\hbox {m}}\right)\)

T :

Temperature of fluid \(\left( {\hbox {K}}\right)\)

\(\varOmega (t)\) :

Angular velocity \(\left( {\hbox {rad s}}^{-1}\right)\)

S :

Wall motion parameter

\(\lambda _{1}\) :

Fluid relaxation time

\(\nu\) :

Kinematic viscosities \(({\hbox {m}}^{2}\,{\hbox {s}}^{-1})\)

M :

Magnetic field parameter

\(\alpha _{1}\) :

Wall temperature parameter \(\left( {\hbox {K}}\right)\)

\(\rho c_{p}\) :

Specific heat

G :

Dimensionless azimuthal velocity

\(B_{0}\) :

Magnetic field strength \(\left( {\hbox { N s C}}^{-1}\,\mathrm{m}^{-1}\right)\)

c :

Arbitrary constant

\(A^{*},B^{*}\) :

Chemical species

\(a^{*},b^{*}\) :

Concentration of chemical species

\(D_\mathrm{A},D_\mathrm{B}\) :

Diffusion coefficients

g :

Homogeneous concentration

h :

Heterogeneous concentration

\(k_\mathrm{c},k_{\rm s}\) :

Rate constants

\(\delta\) :

Ratio of mass diffusion coefficient

\(\alpha\) :

Thermal diffusivity \(\left( {\hbox {m}}^{2}\ {\hbox {s}}^{-1}\right)\)

Re:

Reynolds number

\(T_{\infty }\) :

Ambient fluid temperature

\(T_\mathrm{w}(t)\) :

Wall temperature \(\left( {\hbox {K}}\right)\)

\(\rho c_{p}\) :

Heat capacity of fluid \(\left( {\hbox {J m}}^{-2}\,\mathrm{K}^{-1}\right)\)

\(\eta\) :

Dimensionless variable

\(\theta\) :

Dimensionless temperature

\(\omega\) :

Rotation parameter

\(k_\mathrm{1}\) :

Strength of homogeneous reaction

H :

Dimensionless axial velocity

\(\beta _{1}\) :

Deborah number

\(k_{2}\) :

Strength of heterogeneous reaction

\({\mathbf {V}}\) :

Velocity field \(\left( {\hbox {m s}}^{-1}\right)\)

\({\mathbf {q}}\) :

Heat flux \(\left( {\hbox {W m}}^{-2}\right)\)

F :

Dimensionless radial velocity

\(\beta\) :

Wall permeability

\(\rho\) :

Fluid density \(\left( {\hbox {kg m}}^{-3}\right)\)

\(\lambda _{2}\) :

Thermal relaxation time parameter

k :

Thermal conductivity

\(\sigma\) :

Electric conductivity \(\left( {\hbox {S m}}^{-1}\right)\)

\(\beta _{2}\) :

Thermal relaxation parameter

Sc:

Schmidt number

\(\mu\) :

Dynamic viscosities \(({\hbox {kg m}}^{-1}\ \hbox{s}^{-1})\)

References

  1. Karman TV. Uber laminare und turbulente reibung. Z Angew Math Mech. 1921;1:233.

    Article  Google Scholar 

  2. Cochran WG. The flow due to a rotating disc. Math Proc Camb Philos Soc. 1934;30(3):365–75.

    Article  Google Scholar 

  3. Sparrow EM, Gregg JL. Mass transfer flow and heat transfer about a rotating disk. J Heat Transf. 1960;82(4):294–302.

    Article  CAS  Google Scholar 

  4. Rashidi MM, Pour SM, Hayat T, Obaidat S. Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Comput Fluids. 2012;54:1–9.

    Article  Google Scholar 

  5. Sheikholeslami M, Ganji DD. Three dimensional heat and mass transfer in a rotating system using nanofluid. Powder Technol. 2014;253:789–96.

    Article  CAS  Google Scholar 

  6. Turkyilmazoglu M. MHD fluid flow and heat transfer due to a shrinking rotating disk. Comput Fluids. 2014;90:51–6.

    Article  Google Scholar 

  7. Xun S, Zhao J, Zheng L, Chen X, Zhang X. Flow and heat transfer of Ostwald-de waele fluid over a variable thickness rotating disk with index decreasing. Int J Heat Mass Transf. 2016;103:1214–24.

    Article  CAS  Google Scholar 

  8. Mustafa M. MHD nanofluid flow over a rotating disk with partial slip effects Buongiorno’s model. Int J Heat Mass Transf. 2017;108:1910–6.

    Article  Google Scholar 

  9. Hayat T, Rashid M, Imtiaz M, Alsaedi A. Nanofluid flow due to rotating disk with variable thickness and homogeneous–heterogeneous reactions. Int J Heat Mass Transf. 2017;113:96–105.

    Article  CAS  Google Scholar 

  10. Turkyilmazoglu M. Fluid flow and heat transfer over a rotating and vertically moving disk. Phys Fluids. 2018;30(6):063605.

    Article  Google Scholar 

  11. Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132(2):1189–200.

    Article  CAS  Google Scholar 

  12. Khan M, Ahmed J, Ahmad L. Chemically reactive and radiative von Kármán swirling flow due to a rotating disk. Appl Math Mech Engl Ed. 2018;39(9):1295–310.

    Article  Google Scholar 

  13. Ahmed J, Khan M, Ahmad L. Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J Mol Liq. 2019;287:110853.

    Article  CAS  Google Scholar 

  14. Fourier B, Joseph JB. Théorie analytique de la chaleur F. Didot. 1822

  15. Cattaneo C. Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena. 1948;3:83–101.

    Google Scholar 

  16. Christov CI. On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun. 2009;36:481–6.

    Article  Google Scholar 

  17. Ciarletta M, Straughan B. Uniqueness and structural stability for the Cattaneo–Christov equations. Mech Res Commun. 2010;37:445–7.

    Article  Google Scholar 

  18. Khan JA, Mustafa M, Hayat T, Alsaedi A. Numerical study of Cattaneo–Christov heat flux model for viscoelastic flow due to an exponentially stretching surface. PLOS ONE. 2015;10(9):e0137363.

    Article  Google Scholar 

  19. Hayat T, Aziz A, Muhammad T, Alsaedi A. Model and comparative study for the flow of viscoelastic nanofluids with Cattaneo–Christov double diffusion. PLOS ONE. 2017;12(1):0168824.

    Article  Google Scholar 

  20. Khan SU, Ali N, Sajid M, Hayat T. Heat transfer characteristics in oscillatory hydromagnetic channel flow of Maxwell fluid using Cattaneo–Christov model. Proc Natl Acad Sci. 2019;89(2):377–85.

    Google Scholar 

  21. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.

    Article  CAS  Google Scholar 

  22. Asadollahi A, Esfahani JA, Ellahi R. Evacuating liquid coatings from a diffusive oblique fin in micro-/mini-channels. J Therm Anal Calorim. 2019;138:1–9.

    Article  Google Scholar 

  23. Alamri SZ, Khan AA, Azeez M, Ellahi R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phys Lett A. 2019;383(2–3):276–81.

    Article  CAS  Google Scholar 

  24. Chaudhary MA, Merkin JH. A simple isothermal model for homogeneous–heterogeneous reactions in boundary layer flow equal diffusivities. Fluid Dyn Res. 1995;16:311–33.

    Article  Google Scholar 

  25. Merkin JH. A model for isothermal homogeneous–heterogeneous reactions in boundary-layer flow. Math Comput Mod. 1996;24(8):125–36.

    Article  Google Scholar 

  26. Khan WA, Pop IM. Effects of homogeneous–heterogeneous reactions on the viscoelastic fluid toward a stretching sheet. J Heat Transf. 2012;134(6):064506.

    Article  Google Scholar 

  27. Kameswaran PK, Shaw S, Sibanda P, Murthy PVSN. Homogeneous–heterogeneous reactions in a nanofluid flow due to a porous stretching sheet. Int J Heat Mass Transf. 2013;57(2):465–72.

    Article  CAS  Google Scholar 

  28. Khan MI, Waqas M, Hayat T, Alsaedi A. A comparative study of Casson fluid with homogeneous–heterogeneous reactions. J Colloid Interface Sci. 2017;498:85–90.

    Article  CAS  Google Scholar 

  29. Hayat T, Muhammad K, Alsaedi A, Asghar S. Numerical study for melting heat transfer and homogeneous–heterogeneous reactions in flow involving carbon nanotubes. Res Phys. 2018;8:415–21.

    Google Scholar 

  30. Almutairi F, Khaled SM, Ebaid A. MHD flow of nanofluid with homogeneous–heterogeneous reactions in a porous medium under the influence of second-order velocity slip. MDPI Math. 2019;7(3):220.

    Google Scholar 

  31. Hsiao KL. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl Therm Eng. 2016;98:850–61.

    Article  CAS  Google Scholar 

  32. Hsiao KL. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method. Energy. 2017;130:486–99.

    Article  Google Scholar 

  33. Hsiao KL. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Appl Therm Eng. 2017;112:1281–8.

    Article  CAS  Google Scholar 

  34. Hsiao KL. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int J Heat Mass Transf. 2017;112:983–90.

    Article  Google Scholar 

  35. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08348-9.

    Article  Google Scholar 

  36. Hassan M, Ellahi R, Bhatti MM, Zeeshan A. A comparative study on magnetic and non-magnetic particles in nanofluid propagating over a wedge. Can J Phys. 2018;97(3):277–85.

    Article  Google Scholar 

  37. Zeeshan A, Shehzad N, Abbas T, Ellahi R. Effects of radiative electro-magnetohydrodynamics diminishing internal energy of pressure-driven flow of titanium dioxide-water nanofluid due to entropy generation. Entropy. 2019;21(3):236.

    Article  CAS  Google Scholar 

  38. Yousif MA, Ismael HF, Abbas T, Ellahi R. Numerical study of momentum and heat transfer of MHD Carreau nanofluid over an exponentially stretched plate with internal heat source/sink and radiation. Heat Transf Res. 2019;50(7):649–58.

    Article  Google Scholar 

  39. Ellahi R, Sait SM, Shehzad N, Mobin N. Numerical simulation and mathematical modeling of electro-osmotic Couette–Poiseuille flow of MHD power-law nanofluid with entropy generation. Symmetry. 2019;11(8):1038.

    Article  CAS  Google Scholar 

  40. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Therm Sci. 2020;147:106131.

    Article  CAS  Google Scholar 

  41. Ahmed J, Khan M, Ahmad L. Transient thin-film spin-coating flow of chemically reactive and radiative Maxwell nanofluid over a rotating disk. Appl Phys A. 2019;125(3):161.

    Article  CAS  Google Scholar 

  42. Ahmed J, Khan M, Ahmad L, Alzahrani AK. Thermally radiative flow of Maxwell nanofluid over a permeable rotating disk. Phys Scr. 2019. https://doi.org/10.1088/1402-4896/ab3b9a.

    Article  Google Scholar 

Download references

Acknowledgements

This work has the financial supports from Higher Education Commission (HEC) of Pakistan under the project number: 6210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Ahmed, J. & Ali, W. An improved heat conduction analysis in swirling viscoelastic fluid with homogeneous–heterogeneous reactions. J Therm Anal Calorim 143, 4095–4106 (2021). https://doi.org/10.1007/s10973-020-09342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09342-2

Keywords

Navigation