Use of calorimetry and thermal analysis to assess the heat of supplementary cementitious materials during the hydration of composite cementitious binders

Abstract

The present paper focuses on the suitability, variability and versatility of thermal analysis and calorimetry methods in the study of cement hydration as physical and chemical process including pozzolanicity and hydraulicity of supplementary cementitious materials. Isothermal calorimeter TAM AIR and simultaneous TGA/DSC were used. Not only activation energy of system comprising SCMs, but also heat generated through alkali-activated reaction of metakaolin and ground granulated blast furnace slag (BFS) can be successfully determined by using conduction calorimetry. The incremental heat flow and incremental cumulative heat of the alkali-activated reaction of ground granulated BFS and metakaolin (MK) were determined and found dependent on temperature and mass ratio between cement and SCMs. The incremental heat flow presents the same characteristics as parent heat flow with different peaks, denoting the formation of C–S–H, ettringite and C–A–S–H trough alkali-activated reaction. While BFS and MK influenced moderately the formation of C–S–H, their influence on the formation of C–A–\({\bar{\text{S}}}\)–H (ettringite and monosulphate) and C–A–S–H is significant as evidenced by peak position and intensity. The method of calorimetry coupled with thermal analysis was considered sufficient to assess the pozzolanicity and hydraulicity of SCMs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Abbreviations

C:

CaO

S:

SiO2

A:

Al2O3

F:

Fe2O3

H:

H2O

M:

MgO

\({\bar{\text{S}}}\) :

SO3

References

  1. 1.

    Scrivener KL. Issues in sustainability in cements and concrete. Am Ceram Soc Bull. 2012;91:47–50.

    Google Scholar 

  2. 2.

    Juenger MCG, Snellings R, Bernal SA. Supplementary cementitious materials: new sources, characterization, and performance insights. Cem Concr Res. 2019;122:257–73. https://doi.org/10.1016/j.cemconres.2019.05.008.

    CAS  Article  Google Scholar 

  3. 3.

    EN 197-1. Cement. Part 1: composition, specifications and conformity criteria for common cements; 2011.

  4. 4.

    Zhang T, Yu Q, Wei J, Zhang P. Efficient utilization of cementitious materials to produce sustainable blended cement. Cem Concr Compos. 2012;34(5):692–9. https://doi.org/10.1016/j.cemconcomp.2012.02.004.

    CAS  Article  Google Scholar 

  5. 5.

    Lothenbach B, Scrivener KL, Hooton RD. Supplementary cementitious materials. Cem Concr Res. 2011;41(12):1244–56. https://doi.org/10.1016/j.cemconres.2010.12.001.

    CAS  Article  Google Scholar 

  6. 6.

    Kosmatka SH, Wilson ML. Design and control of concrete mixtures: the guide to applications, methods, and materials. 15th ed. Portland Cement Association; 2011. https://faculty.uml.edu/ehajduk/Teaching/14.310/documents/EB001.15.pdf. Accessed 23 Jan 2020.

  7. 7.

    ASTM C 125-15a. Standard terminology relating to concrete and concrete aggregate; 2015. https://dx.doi.org/10.1520/C0125-15A.

  8. 8.

    Van VTA, Rößler C, Bui DD, Ludwig HM. Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete. Cem Concr Compos. 2014;53:270–8. https://doi.org/10.1016/j.cemconcomp.2014.07.015.

    CAS  Article  Google Scholar 

  9. 9.

    Yu R, Spiesz P, Brouwers HJH. Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount. Constr Build Mater. 2014;65:140–50. https://doi.org/10.1016/j.conbuildmat.2014.04.063.

    Article  Google Scholar 

  10. 10.

    Soliman NA, Tagnit-Hamou A. Development of ultra-high-performance concrete using glass powder—towards ecofriendly concrete. Constr Build Mater. 2016;125:600–12. https://doi.org/10.1016/j.conbuildmat.2016.08.073.

    CAS  Article  Google Scholar 

  11. 11.

    Yu R, Spiesz P, Brouwers HJH. Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixture uses. Cem Concr Compos. 2015;55:383–94. https://doi.org/10.1016/j.cemconcomp.2014.09.024.

    CAS  Article  Google Scholar 

  12. 12.

    Davidovits J. Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim. 1991;37(8):1633–56. https://doi.org/10.1007/BF01912193.

    CAS  Article  Google Scholar 

  13. 13.

    Fernandez R, Martirena F, Scrivener KL. The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res. 2011;41(1):113–22. https://doi.org/10.1016/j.cemconres.2010.09.013.

    CAS  Article  Google Scholar 

  14. 14.

    Chen W, Brouwers HJH. The hydration of slag, part 1: reaction models for alkali-activated slag. J Mater Sci. 2007;42(2):428–43. https://doi.org/10.1007/s10853-006-0873-2.

    CAS  Article  Google Scholar 

  15. 15.

    Li C, Sun H, Li L. A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res. 2010;40(9):1341–9. https://doi.org/10.1016/j.cemconres.2010.03.020.

    CAS  Article  Google Scholar 

  16. 16.

    Oey T, Kumar A, Bullard JW, Neithalath N, Sant G. The filler effect: the influence of filler content and surface area on cementitious reaction rates. J Am Ceram Soc. 2013;96(6):1978–90. https://doi.org/10.1111/jace.12264.

    CAS  Article  Google Scholar 

  17. 17.

    Mlinárik L, Kopecskó K. The Influence of Combined Application of Two SCMs on the Corrosion and Acid Attack Durability of Mortars. Period Polytech-Civ. 2017;61(2):313–21. https://doi.org/10.3311/PPci.9352.

    Article  Google Scholar 

  18. 18.

    EN 206:2013 + A1:2016 Concrete. Specification, performance, production and conformity; 2016.

  19. 19.

    Mlinárik L, Kopecskó K, Borosnyói A. Properties of cement mortars in fresh and hardened condition influenced by combined application of SCMs. Építöanyag. 2016;68(2):62–6. https://doi.org/10.14382/epitoanyag-jsbcm.2016.11.

    Article  Google Scholar 

  20. 20.

    Uysal M, Yilmaz K. Effect of mineral admixture on properties of self-compacting concrete. Cem Concr Compos. 2011;33(7):771–6. https://doi.org/10.1016/j.cemconcomp.2011.04.005.

    CAS  Article  Google Scholar 

  21. 21.

    Zeng X, Ma C, Long G, Dang H, Xie Y. Hydration kinetics of cement composites with different admixtures at low temperatures. Constr Build Mater. 2019;225:223–33. https://doi.org/10.1016/j.conbuildmat.2019.07.153.

    CAS  Article  Google Scholar 

  22. 22.

    Siad H, Lachemi M, Bernard SK, Sahmaran M, Hossain A. Assessment of the long-term performance of SCC incorporating different mineral admixtures in a magnesium sulphate environment. Constr Build Mater. 2015;80:141–54. https://doi.org/10.1016/j.conbuildmat.2015.01.067.

    Article  Google Scholar 

  23. 23.

    Khouadjia MLK, Mezghiche B, Drissi M. Experimental evaluation of workability and compressive strength of concrete with several local sand and mineral additions. Constr Build Mater. 2015;98:194–203. https://doi.org/10.1016/j.conbuildmat.2015.08.081.

    Article  Google Scholar 

  24. 24.

    Ramkrishnan R, Abilash B, Trivedi M, Varsh P, Varun P, Vishanth S. Effect of mineral admixtures on pervious concrete. Mater Today Proc. 2018;5(11):24014–23. https://doi.org/10.1016/j.matpr.2018.10.194.

    CAS  Article  Google Scholar 

  25. 25.

    Snellings R, Salze A, Scrivener KL. Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements. Cem Concr Res. 2014;64:89–98. https://doi.org/10.1016/j.cemconres.2014.06.011.

    CAS  Article  Google Scholar 

  26. 26.

    Mlinárik L, Kopecskó K. Impact of metakaolin—a new supplementary material—on the hydration mechanism of cements. Acta Tech Napoc Civil Eng Archit. 2013;56(2):100–10.

    Google Scholar 

  27. 27.

    Talero R. Comparative XRD analysis ettringite originating from pozzolan and from Portland cement. Cem Concr Res. 1996;26(8):1277–83. https://doi.org/10.1016/0008-8846(96)00092-0.

    CAS  Article  Google Scholar 

  28. 28.

    Bae S, Meral C, Oh J, Moon J, Kunz M, Monteiro PJM. Characterization of morphology and hydration products of high-volume fly ash paste by monochromatic scanning X-ray micro-diffraction (μ-SXRD). Cem Concr Res. 2014;59:155–64. https://doi.org/10.1016/j.cemconres.2014.03.001.

    CAS  Article  Google Scholar 

  29. 29.

    Souri A, Kazemi-Kamyab H, Snellings R, Naghizadeh R, Golestani-Fard F, Scrivener KL. Pozzolanic activity of mechanochemically and thermally activated kaolins in cement. Cem Concr Res. 2015;77:47–59. https://doi.org/10.1016/j.cemconres.2015.04.017.

    CAS  Article  Google Scholar 

  30. 30.

    EN 196-5. Methods of testing cement. Part 5: pozzolanicity test for pozzolanic cement; 2011.

  31. 31.

    Frías M, de la Villa RV, de Rojas MIS, Medina C, Valdés AJ. Scientific aspects of kaolinite based coal mining wastes in pozzolan/Ca(OH)2 system. J Am Ceram Soc. 2012;95(1):386–91. https://doi.org/10.1111/j.1551-2916.2011.04985.x.

    CAS  Article  Google Scholar 

  32. 32.

    Tironi A, Trezza MA, Scian AN, Irassar EF. Assessment of pozzolanic activity of different calcined clays. Cem Concr Compos. 2013;37:319–27. https://doi.org/10.1016/j.cemconcomp.2013.01.002.

    CAS  Article  Google Scholar 

  33. 33.

    Mendoza O, Tobón JI. An alternative thermal method for identification of pozzolanic activity in Ca(OH)2/pozzolan pastes. J Therm Anal Calorim. 2013;114(2):589–96. https://doi.org/10.1007/s10973-013-2973-y.

    CAS  Article  Google Scholar 

  34. 34.

    Luxán MP, Madruga M, Saavedra J. Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem Concr Res. 1989;19(1):63–8. https://doi.org/10.1016/0008-8846(89)90066-5.

    Article  Google Scholar 

  35. 35.

    Velázquez S, Monzó JM, Borrachero MV, Payá J. Assessment of the pozzolanic activity of a spent catalyst by conductivity measurement of aqueous suspensions with calcium hydroxide. Materials. 2014;7(4):2561–76. https://doi.org/10.3390/ma7042561.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Velázquez S, Monzó JM, Borrachero MV, Payá J. Assessment of pozzolanic activity using methods based on the measurement of electrical conductivity of suspensions of Portland cement and pozzolan. Materials. 2014;7(11):7533–47. https://doi.org/10.3390/ma7117533.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Donatello S, Tyrer M, Cheeseman CR. Comparison of test methods to assess pozzolanic activity. Cem Concr Compos. 2010;32(2):121–7. https://doi.org/10.1016/j.cemconcomp.2009.10.008.

    CAS  Article  Google Scholar 

  38. 38.

    Šiler P, Krátky J, De Belie N. Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. J Therm Anal Calorim. 2012;107(1):313–20. https://doi.org/10.1007/s10973-011-1479-8.

    CAS  Article  Google Scholar 

  39. 39.

    Pacewska B, Wilińska I, Bukowska M. Calorimetric investigations of the influence of waste aluminosilicate on the hydration of different cements. J Therm Anal Calorim. 2009;97:61–6. https://doi.org/10.1007/s10973-008-9668-9.

    CAS  Article  Google Scholar 

  40. 40.

    Zielenkiewicz W, Kamiński M. A conduction calorimeter for measuring the heat of cement hydration in the initial hydration period. J Therm Anal Calorim. 2001;65(2):335–40. https://doi.org/10.1023/A:1012480828799.

    CAS  Article  Google Scholar 

  41. 41.

    Rahhal V, Cabrera O, Talero R, Delgado A. Calorimetry of Portland cement with silica fume and gypsum additions. J Therm Anal Calorim. 2007;87(2):331–7. https://doi.org/10.1007/s10973-005-7324-1.

    CAS  Article  Google Scholar 

  42. 42.

    Lin F, Meyer C. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure. Cem Concr Res. 2009;39(4):255–65. https://doi.org/10.1016/j.cemconres.2009.01.014.

    CAS  Article  Google Scholar 

  43. 43.

    Ježo Ľ, Ifka T, Cvopa B, Škundová J, Kovár V, Palou MT. Effect of temperature upon the strength development rate and upon the hydration kinetics of cements. Ceram-Silikáty. 2010;54(3):269–76.

    Google Scholar 

  44. 44.

    Bentz DP. Activation energies of high-volume fly ash ternary blends: hydration and setting. Cem Concr Compos. 2014;53:214–23. https://doi.org/10.1016/j.cemconcomp.2014.06.018.

    CAS  Article  Google Scholar 

  45. 45.

    Suraneni P, Weiss J. Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis. Cem Concr Compos. 2017;83:273–8. https://doi.org/10.1016/j.cemconcomp.2017.07.009.

    CAS  Article  Google Scholar 

  46. 46.

    Glukhovsky VD, Rostovskaja GS, Rumyna GV. High strength slag-alkaline cements. In: 7th International congress on the chemistry of cement, Paris, France, 1980, III 164–8.

  47. 47.

    Frías M, de Rojas MIS, Cabrera J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin cement mortars. Cem Concr Res. 2000;30(2):209–16. https://doi.org/10.1016/S0008-8846(99)00231-8.

    Article  Google Scholar 

  48. 48.

    Palou MT, Kuzielová E, Novotný R, Šoukal F, Žemlička M. Blended cements consisting of Portland cement–slag–silica fume–metakaolin system. J Therm Anal Calorim. 2016;125:1025–34. https://doi.org/10.1007/s10973-016-5399-5.

    CAS  Article  Google Scholar 

  49. 49.

    Palou MT, Kuzielová E, Žemlička M, Novotný R, Másilko J. The effect of metakaolin upon the formation of ettringite in metakaolin–lime–gypsum ternary systems. J Therm Anal Calorim. 2018;133(1):77–86. https://doi.org/10.1007/s10973-017-6885-0.

    CAS  Article  Google Scholar 

  50. 50.

    Kuzielová E, Žemlička M, Novotný R, Palou MT. Simultaneous effect of silica fume, metakaolin and ground granulated blast-furnace slag on the hydration of multicomponent cementitious binders. J Therm Anal Calorim. 2019;136(4):1527–37. https://doi.org/10.1007/s10973-018-7813-7.

    CAS  Article  Google Scholar 

  51. 51.

    Kim T, Olek J. Effects of sample preparation and interpretation of thermogravimetric curves on calcium hydroxide in hydrated pastes and mortars. Transp Res Rec J Transp Res Board. 2012;2290(1):10–8. https://doi.org/10.3141/2290-02.

    CAS  Article  Google Scholar 

  52. 52.

    Žemlička M, Kuzielová E, Kuliffayová M, Tkacz J, Palou MT. Study of hydration products in the model systems metakaolin–lime and metakaolin–lime–gypsum. Ceram-Silikaty. 2015;59(4):283–91.

    Google Scholar 

  53. 53.

    Boháč M, Palou MT, Novotný R, Másilko J, Šoukal F, Opravil T. Influence of temperature on early hydration of Portland cement–metakaolin–slag system. J Therm Anal Calorim. 2017;127(1):309–18. https://doi.org/10.1007/s10973-016-5592-6.

    CAS  Article  Google Scholar 

  54. 54.

    Boháč M, Palou MT, Novotný R, Másilko J, Všianský D, Staněk T. Investigation on early hydration of ternary Portland cement–blast–furnace slag–metakaolin blends. Constr Build Mater. 2014;64:333–41. https://doi.org/10.1016/j.conbuildmat.2014.04.018.

    Article  Google Scholar 

  55. 55.

    Wei J, Gencturk B. Hydration of ternary Portland cement blends containing metakaolin and sodium bentonite. Cem Concr Res. 2019;123:105772. https://doi.org/10.1016/j.cemconres.2019.05.017.

    CAS  Article  Google Scholar 

  56. 56.

    Palou MT, Kuzielová E, Žemlička M, Boháč M, Novotný R. The effect of curing temperature on the hydration of binary Portland cement. J Therm Anal Calorim. 2016;125(3):1301–10. https://doi.org/10.1007/s10973-016-5395-9.

    CAS  Article  Google Scholar 

  57. 57.

    Murat M. Hydration reaction and hardening of calcined clays and related minerals. I. Preliminary investigation on metakaolinite. Cem Concr Res. 1983;13(2):259–66. https://doi.org/10.1016/0008-8846(83)90109-6.

    CAS  Article  Google Scholar 

  58. 58.

    Palou MT, Šoukal F, Boháč M, Šiler P, Ifka T, Živica V. Performance of G-Oil Well cement exposed to elevated hydrothermal curing conditions. J Therm Anal Calorim. 2014;118:865–74.

    CAS  Article  Google Scholar 

  59. 59.

    Kuzielova E, Žemlička M, Masilko J, Palou MT. Effect of additives on the performance of Dyckerhoff cement, Class G, submitted to simulated hydrothermal curing. J. Therm. Anal. Calorim. 2018;133(1):63–76. https://doi.org/10.1007/s10973-017-6806-2.

    CAS  Article  Google Scholar 

  60. 60.

    Kuzielová E, Žemlička M, Másilko J, Palou MT. Development of G-oil well cement phase composition during long term hydrothermal curing. Geothermics. 2019;80:129–37.

    Article  Google Scholar 

  61. 61.

    Sha W, Pereira GB. Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cem Concr Compos. 2001;23(6):455–61. https://doi.org/10.1016/S0958-9465(00)00090-1.

    CAS  Article  Google Scholar 

  62. 62.

    Ondro T, Al-Shantira O, Csáki Š, František L, Trníka A. Kinetic analysis of sinter-crystallization of mullite and cristobalite from Kaolinite. Thermochim Acta. 2019;678:47–51. https://doi.org/10.1016/j.tca.2019.178312.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by courtesy of APVV–15–0631, Slovak Grant Agency VEGA No. 2/0097/17 and Czech Science Foundation GA19–16646S. The authors express their thankful to V4–Kórea Joint Research Program on Chemistry and Chemical Engineering under the auspices of Slovak Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Palou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palou, M., Boháč, M., Kuzielová, E. et al. Use of calorimetry and thermal analysis to assess the heat of supplementary cementitious materials during the hydration of composite cementitious binders. J Therm Anal Calorim 142, 97–117 (2020). https://doi.org/10.1007/s10973-020-09341-3

Download citation

Keywords

  • Supplementary cementitious materials
  • Pozzolanicity
  • Hydraulicity
  • Activation energy
  • Incremental heat flow
  • Incremental cumulative heat