Skip to main content
Log in

Numerical evaluation of the effect of utilizing twisted tape with curved profile as a turbulator on heat transfer enhancement in a pipe

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A numerical analysis is performed to investigate the thermal performance of turbulent fluid flow and heat transfer through a circular tube equipped with curved twisted tapes. The considered geometrical parameters are the pitch ratio, height and curvature of the curved twisted tape. Three-dimensional simulations are validated by experimental data available in the literature. The governing equations of turbulent flow are solved by using k − ε model for range of Reynolds number between 2500 and 20,000. Due to swirl flow, the effect of two regions, including near wall region and core region, on heat transfer and pressure drop are discussed. The presence of curved profile twisted tape leads to better heat transfer rate. The results show that case with height of curved twisted tape equal to 7 mm has around 35% higher thermal performance than the base case. Also, case with height of curved twisted tape equal to 5 mm has 30% higher thermal performance than the base case. Cases with pitch ratio between 5 and 15 have better thermal performance than normal pipe, but generally case with pitch ratio equal to unity has lower average thermal performance than the normal pipe. The maximum and minimum thermal performance improvement belongs to pitch ratio equal to 5 at Re = 10,000 (around 26%) and pitch ratio equal to unity at Re = 2500 (− 14%). The maximum and minimum thermal performance belongs to curve of curved twisted tape equal to 5 mm and 1.5 mm with 28% (at Re = 20,000) and − 4% (at Re = 2500), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

d :

Diameter (mm)

u :

Velocity (m s−1)

P :

Pressure (bar)

T :

Temperature (K)

C p :

Specific heat capacity (J kg−1 K−1)

V :

Volume (m3)

k :

Turbulent kinetic energy (W)

G k :

Generation of turbulent kinetic energy (W)

g :

Gravity acceleration, (m s−2)

L :

Length (m)

\(\dot{Q}\) :

Heat flux (W m−2)

f :

Friction factor

Pr:

Prandtl number

Nu:

Nusselt number

Re:

Reynolds number

h :

Heat transfer coefficient (W m−2 K−1)

\(\mu_{\text{t}}\) :

Eddy viscosity

PR:

Pitch ratio

\(\lambda\) :

Thermal conductivity (W m−1 K−1)

\(\mu\) :

Dynamic viscosity (kg m−1 s)

ρ :

Density, kg m−3

η :

Thermal performance

α :

Inverse effective Prandtl number

ε :

Dissipation ratio

τ :

Stress tensor

Φ:

Dissipation

w:

Wall

t:

Turbulent

h:

Hydraulic

0:

Reference

eff:

Effective

b:

Bulk

m:

Average

References

  1. Sun F, et al. Flow simulation of the mixture system of supercritical CO2 & superheated steam in toe-point injection horizontal wellbores. J Pet Sci Eng. 2018;163:199–210.

    CAS  Google Scholar 

  2. Belan M, Tordella D, De Ponte S. A system of fast acceleration of a mass of gas for the laboratory simulation of stellar jets. In: 19th international congress on ICIASF 2001 instrumentation in aerospace simulation facilities. IEEE, 2001.

  3. Bergles A. Heat transfer enhancement—the encouragement and accommodation of high heat fluxes. J Heat Transf. 1997;119(1):8–19.

    CAS  Google Scholar 

  4. Williams W, Buongiorno J, Hu L-W. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf. 2008;130(4):042412.

    Google Scholar 

  5. Rea U, et al. Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int J Heat Transf. 2009;52(7–8):2042–8.

    CAS  Google Scholar 

  6. Godson L, et al. Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Arch Civ Mech Eng. 2014;14(3):489–96.

    Google Scholar 

  7. Mohammed H, et al. Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts. Int Commun Heat Mass Transf. 2013;40:36–46.

    CAS  Google Scholar 

  8. Torii K, et al. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers. Int Commun Heat Mass Transf. 2002;45(18):3795–801.

    Google Scholar 

  9. Webb R, Eckert ER. Application of rough surfaces to heat exchanger design. Int J Heat Mass Transf. 1972;15(9):1647–58.

    Google Scholar 

  10. Eiamsa-Ard S, Promvonge P. Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts. Int J Heat Mass Transf. 2010;53(7–8):1364–72.

    Google Scholar 

  11. Eiamsa-Ard S, et al. Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem. Int Commun Heat Mass Transf. 2010;37(1):39–46.

    Google Scholar 

  12. Hong S, Bergles AE. Augmentation of laminar flow heat transfer in tubes by means of twisted-tape inserts. J. Heat Transfer. 1976;98(2):251–256

    CAS  Google Scholar 

  13. Promvonge P, Eiamsa-ard S. Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert. Int Commun Heat Mass Transf. 2007;34(7):849–59.

    Google Scholar 

  14. Promvonge P, Eiamsa-Ard SJET, Science F. Heat transfer augmentation in a circular tube using V-nozzle turbulator inserts and snail entry. Exp Therm Fluid Sci. 2007;32(1):332–40.

    CAS  Google Scholar 

  15. Promvonge P, et al. Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings. Appl Therm Eng. 2014;62(1):285–92.

    Google Scholar 

  16. Gunes S, et al. Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts. Exp Therm Fluid Sci. 2010;34(6):684–91.

    Google Scholar 

  17. Liu S, Sakr MJR. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew Sustain Energy Rev. 2013;19:64–81.

    Google Scholar 

  18. Sheikholeslami M, et al. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices. Renew Sustain Energy Rev. 2015;49:444–69.

    Google Scholar 

  19. Dewan A, et al. Review of passive heat transfer augmentation techniques. Proc Inst Mech Eng Part A: J Power Energy. 2004;218(7):509–27.

    CAS  Google Scholar 

  20. Badescu VJ. Simple and accurate model for the ground heat exchanger of a passive house. Renew Energy. 2007;32(5):845–55.

    Google Scholar 

  21. Yildiz C, et al. Effect of twisted strips on heat transfer and pressure drop in heat exchangers. Energy Conserv Manag. 1998;39(3–4):331–6.

    CAS  Google Scholar 

  22. Nakhchi ME, Esfahani JA. Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. Int J Therm Sci. 2019;138:75–83.

    Google Scholar 

  23. Sarada N, et al. Enhancement of heat transfer using varying width twisted tape inserts. Int J Eng Sci Technol. 2010;2:107–18.

    Google Scholar 

  24. Eiamsa-ard S, et al. Thermohydraulic investigation of turbulent flow through a round tube equipped with twisted tapes consisting of centre wings and alternate-axes. Exp Therm Fluid Sci. 2010;34(8):1151–61.

    Google Scholar 

  25. Thianpong C, et al. Effect of perforated twisted-tapes with parallel wings on heat tansfer enhancement in a heat exchanger tube. Energy Procedia. 2012;14:1117–23.

    CAS  Google Scholar 

  26. Eiamsa-ard S, et al. Heat transfer enhancement in a tube using delta-winglet twisted tape inserts. Appl Therm Eng. 2010;30(4):310–8.

    Google Scholar 

  27. Murugesan P, Mayilsamy K, Suresh S. Heat transfer and friction factor studies in a circular tube fitted with twisted tape consisting of wire-nails. Chin J Chem Eng. 2010;18(6):1038–42.

    CAS  Google Scholar 

  28. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08683-x.

    Article  Google Scholar 

  29. Wang W, Zhang Y, Li B, Li Y. Numerical investigation of tube-side fully developed turbulent flow and heat transfer in outward corrugated tubes. Int J Heat Mass Transf. 2018;116:115–26.

    Google Scholar 

  30. Wang W, Zhang Y, Liu J, Li B, Sundén B. Numerical investigation of entropy generation of turbulent flow in a novel outward corrugated tube. Int J Heat Mass Transf. 2018;126:836–47.

    Google Scholar 

  31. Bahiraei M, Mazaheri N, Hassanzamani SM. Efficacy of a new graphene–platinum nanofluid in tubes fitted with single and twin twisted tapes regarding counter and co-swirling flows for efficient use of energy. Int J Mech Sci. 2019;150:290–303.

    Google Scholar 

  32. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    CAS  Google Scholar 

  33. Bahiraei M, Mazaheri N, Aliee F. Second law analysis of a hybrid nanofluid in tubes equipped with double twisted tape inserts. Powder Technol. 2019;345:692–703.

    CAS  Google Scholar 

  34. Bahiraei M, Mazaheri N, Rizehvandi A. Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Appl Therm Eng. 2019;149:588–601.

    CAS  Google Scholar 

  35. Bahiraei M, Jamshidmofid M, Goodarzi M. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq. 2019;273:88–98.

    CAS  Google Scholar 

  36. Bahiraei M, Mazaheri N, Mohammadi MS, Moayedi H. Thermal performance of a new nanofluid containing biologically functionalized graphene nanoplatelets inside tubes equipped with rotating coaxial double-twisted tapes. Int Commun Heat Mass Transf. 2019;108:104305.

    CAS  Google Scholar 

  37. Fluent AN. 18.2, Theory Guide, ANSYS Inc. Canonsburg, PA. 2017.

  38. Baragh S, Shokouhmand H, Ajarostaghi SS, Nikian M. An experimental investigation on forced convection heat transfer of single-phase flow in a channel with different arrangements of porous media. Int J Therm Sci. 2018;1(134):370–9.

    Google Scholar 

  39. Shirzad M, Ajarostaghi SS, Delavar MA, Sedighi K. Improve the thermal performance of the pillow plate heat exchanger by using nanofluid: numerical simulation. Adv Powder Technol. 2019;30(7):1356–65.

    CAS  Google Scholar 

  40. Baragh S, Shokouhmand H, Ajarostaghi SS. Experiments on mist flow and heat transfer in a tube fitted with porous media. Int J Therm Sci. 2019;1(137):388–98.

    Google Scholar 

  41. Shirzad M, Delavar MA, Ajarostaghi SSM, Sedighi K. Evaluation the effects of geometrical parameters on the performance of pillow plate heat exchanger. Chem Eng Res Des. 2019;150:74–83.

    CAS  Google Scholar 

  42. Noorbakhsh M, Zaboli M, Ajarostaghi SSM. Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08509-w.

    Article  Google Scholar 

  43. Zaboli M, Ajarostaghi SSM, Noorbakhsh M, Delavar MA. Effects of geometrical and operational parameters on heat transfer and fluid flow of three various water based nanofluids in a shell and coil tube heat exchanger. SN Appl Sci. 2019;1(11):1387.

    Google Scholar 

  44. Hamedani FA, Ajarostaghi SSM, Hosseini SA. Numerical evaluation of the effect of geometrical and operational parameters on thermal performance of nanofluid flow in convergent–divergent tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08765-w.

    Article  Google Scholar 

  45. Moghadam HK, Ajarostaghi SSM, Poncet S. Extensive numerical analysis of the thermal performance of a corrugated tube with coiled wire. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08876-4.

    Article  Google Scholar 

  46. Kim D, et al. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9(2, Supplement):e119–23.

    Google Scholar 

  47. Afsharpanah F, Pakzad K, Amirsoleymani M, Delavar MA. Numerical study of heat transfer enhancement using perforated dual twisted tape inserts in converging-diverging tubes. Heat Transf Asian Res. 2018;47:754–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurosh Sedighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Outokesh, M., Ajarostaghi, S.S.M., Bozorgzadeh, A. et al. Numerical evaluation of the effect of utilizing twisted tape with curved profile as a turbulator on heat transfer enhancement in a pipe. J Therm Anal Calorim 140, 1537–1553 (2020). https://doi.org/10.1007/s10973-020-09336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09336-0

Keywords

Navigation