Skip to main content
Log in

The performance assessment of nanofluid-based PVTs with and without transparent glass cover: outdoor experimental study with thermodynamics analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main objective of current work is to scrutinize the performance of unglazed photovoltaic thermal system (PVTs) and transparent glazed photovoltaic thermal system (GPVTs) from energy and exergy standpoints using four different operating fluids consisting of deionized water, GNP/water, SWCNT/water, and MWCNT/water nanofluids with a mass concentration of 0.05%. Sunny and stable days with the clear sky of September and October are selected as the suitable actual conditions. The outdoor experiments are carried out from 9:30 to 16:00. The results reveal that in the GPVTs, although using a transparent glass cover has an undesirable effect on the surface temperature, electrical output power, and electrical efficiency, the concurrent effect of the glass cover and nanofluid considerably increases the thermal and overall efficiencies. Among all studied operating fluids, the GNP/water and SWCNT/water nanofluids would be more efficient in terms of energy and exergy performances. Regarding the energy viewpoint, the overall efficiencies of GPVTs/MWCNT, GPVTs/SWCNT, and GPVTs/GNP are higher by 12.32%, 17.02%, and 22.65%, respectively, compared to those of PVTs with deionized water. Moreover, from the exergy viewpoint, the overall efficiencies of PVTs/water, PVTs/MWCNT, PVTs/SWCNT, and PVTs/GNP are higher by 1.42%, 1.68%, 1.93%, and 2.32%, respectively, compared to those of the PV unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Area/m2

C p :

Specific heat capacity/J kg−1 K−1

\(\dot{E}\) :

Energy rate/W

\({\dot{\text{E}}\text{x}}\) :

Exergy rate/W

\({\text{FF}}\) :

Filled factor

\(\dot{G}\) :

Solar radiation rate/W m−2

\(I\) :

Electrical current/A

\(\dot{m}\) :

Mass flow rate/kg s−1

\(T\) :

Temperature/K

\(V\) :

Electrical voltage/V

\(\alpha\) :

Absorptivity of panel

\(\eta\) :

Energy efficiency/%

\(\varepsilon\) :

Exergy efficiency/%

\(\rho\) :

Density/kg m−3

\(\phi\) :

Volume concentration

\(\tau\) :

Glass cover transmissivity

Amb:

Ambient

Bf:

Base fluid

C:

Collector

Cell:

Photovoltaic cell

Dest:

Destruction

El:

Electrical

F:

Fluid

G:

Glass cover

In:

Input

N:

Nanoparticle

Oc:

Open circuit

Outlet:

Outlet

Sc:

Short circuit

Th:

Thermal

PV:

Photovoltaic unit

PVTs:

Photovoltaic thermal system

GPVTs:

Photovoltaic thermal system with a glass cover

References

  1. Amini M, Kianifar A, Edalatpour M, editors. An analytical study on energy and exergy of a minichannel-based solar collector using Fe3O4 and MgO/water nanofluids. In: International conference on researches in science and engineering; 2016.

  2. Ammar AA, Sopian K, Alghoul MA, Elhub B, Elbreki AM. Performance study on photovoltaic/thermal solar-assisted heat pump system. J Therm Anal Calorim. 2019;136(1):79–87. https://doi.org/10.1007/s10973-018-7741-6.

    Article  CAS  Google Scholar 

  3. Kazemian A, Salari A, Hakkaki-Fard A, Ma T. Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material. Appl Energy. 2019;238:734–46. https://doi.org/10.1016/j.apenergy.2019.01.103.

    Article  Google Scholar 

  4. Gangadevi R, Vinayagam BK. Experimental determination of thermal conductivity and viscosity of different nanofluids and its effect on a hybrid solar collector. J Therm Anal Chem. 2019;136(1):199–209. https://doi.org/10.1007/s10973-018-7840-4.

    Article  CAS  Google Scholar 

  5. Hossain MS, Pandey AK, Selvaraj J, Abd Rahim N, Rivai A, Tyagi VV. Thermal performance analysis of parallel serpentine flow based photovoltaic/thermal (PV/T) system under composite climate of Malaysia. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2019.01.007.

    Article  Google Scholar 

  6. Khanna S, Newar S, Sharma V, Reddy KS, Mallick TK, Radulovic J, et al. Electrical enhancement of solar photovoltaic using phase change material. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.02.169.

    Article  Google Scholar 

  7. AL-Musawi AIA, Taheri A, Farzanehnia A, Sardarabadi M, Passandideh-Fard M. Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems. J Therm Anal Calorim. 2019;137(2):623–36. https://doi.org/10.1007/s10973-018-7972-6.

    Article  CAS  Google Scholar 

  8. Fudholi A, Zohri M, Rukman NSB, Nazri NS, Mustapha M, Yen CH, et al. Exergy and sustainability index of photovoltaic thermal (PVT) air collector: a theoretical and experimental study. Renew Sustain Energy Rev. 2019;100:44–51. https://doi.org/10.1016/j.rser.2018.10.019.

    Article  Google Scholar 

  9. Kumar R, Rosen MA. A critical review of photovoltaic–thermal solar collectors for air heating. Appl Energy. 2011;88(11):3603–14. https://doi.org/10.1016/j.apenergy.2011.04.044.

    Article  CAS  Google Scholar 

  10. Preet S. Water and phase change material based photovoltaic thermal management systems: a review. Renew Sustain Energy Rev. 2018;82:791–807. https://doi.org/10.1016/j.rser.2017.09.021.

    Article  CAS  Google Scholar 

  11. Yazdanifard F, Ameri M, Ebrahimnia-Bajestan E. Performance of nanofluid-based photovoltaic/thermal systems: a review. Renew Sustain Energy Rev. 2017;76:323–52. https://doi.org/10.1016/j.rser.2017.03.025.

    Article  CAS  Google Scholar 

  12. Aberoumand S, Ghamari S, Shabani B. Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: an experimental study. Sol Energy. 2018;165:167–77. https://doi.org/10.1016/j.solener.2018.03.028.

    Article  CAS  Google Scholar 

  13. Al-Waeli AHA, Chaichan MT, Kazem HA, Sopian K. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag. 2017;148:963–73. https://doi.org/10.1016/j.enconman.2017.06.072.

    Article  CAS  Google Scholar 

  14. Sardarabadi M, Hosseinzadeh M, Kazemian A, Passandideh-Fard M. Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy. 2017;138:682–95. https://doi.org/10.1016/j.energy.2017.07.046.

    Article  CAS  Google Scholar 

  15. Said Z, Arora S, Bellos E. A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renew Sustain Energy Rev. 2018;94:302–16. https://doi.org/10.1016/j.rser.2018.06.010.

    Article  CAS  Google Scholar 

  16. Fayaz H, Nasrin R, Rahim NA, Hasanuzzaman M. Energy and exergy analysis of the PVT system: effect of nanofluid flow rate. Sol Energy. 2018;169:217–30. https://doi.org/10.1016/j.solener.2018.05.004.

    Article  CAS  Google Scholar 

  17. Nasrin R, Rahim NA, Fayaz H, Hasanuzzaman M. Water/MWCNT nanofluid based cooling system of PVT: experimental and numerical research. Renew Energy. 2018;121:286–300. https://doi.org/10.1016/j.renene.2018.01.014.

    Article  CAS  Google Scholar 

  18. Abdallah SR, Saidani-Scott H, Abdellatif OE. Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid. Sol Energy. 2019;181:108–15. https://doi.org/10.1016/j.solener.2019.01.088.

    Article  CAS  Google Scholar 

  19. Alshaheen AA, Kianifar A, Rahimi AB. Experimental study of using nano-(GNP, MWCNT, and SWCNT)/water to investigate the performance of a PVT module. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08724-5.

    Article  Google Scholar 

  20. Alous S, Kayfeci M, Uysal A. Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems. Appl Therm Eng. 2019;162:114265. https://doi.org/10.1016/j.applthermaleng.2019.114265.

    Article  CAS  Google Scholar 

  21. Yazdanifard F, Ebrahimnia-Bajestan E, Ameri M. Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime. Renew Energy. 2016;99:295–306. https://doi.org/10.1016/j.renene.2016.07.004.

    Article  CAS  Google Scholar 

  22. Chow TT, Pei G, Fong KF, Lin Z, Chan ALS, Ji J. Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover. Appl Energy. 2009;86(3):310–6. https://doi.org/10.1016/j.apenergy.2008.04.016.

    Article  Google Scholar 

  23. Kazemian A, Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M. Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: an experimental study. Sol Energy. 2018;173:1002–10. https://doi.org/10.1016/j.solener.2018.07.051.

    Article  CAS  Google Scholar 

  24. Said Z, Saidur R, Sabiha MA, Rahim NA, Anisur MR. Thermophysical properties of Single Wall Carbon Nanotubes and its effect on exergy efficiency of a flat plate solar collector. Sol Energy. 2015;115:757–69. https://doi.org/10.1016/j.solener.2015.02.037.

    Article  CAS  Google Scholar 

  25. Haddad Z, Abid C, Mohamad AA, Rahli O, Bawazer S. Natural convection of silica–water nanofluids based on experimental measured thermophysical properties: critical analysis. Heat Mass Transf. 2016;52(8):1649–63. https://doi.org/10.1007/s00231-015-1682-4.

    Article  CAS  Google Scholar 

  26. Drew DA, Passman SL. Theory of multicomponent fluids. Berlin: Springer; 2006.

    Google Scholar 

  27. Kazemian A, Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M. Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints. Energy. 2018. https://doi.org/10.1016/j.energy.2018.07.069.

    Article  Google Scholar 

  28. Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M. Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy. 2018;147:636–47. https://doi.org/10.1016/j.energy.2018.01.073.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Sardarabadi or Ali Kianifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Amin Taheri and Mohsen Kazemi have equal contribution in this work as the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, A., Kazemi, M., Amini, M. et al. The performance assessment of nanofluid-based PVTs with and without transparent glass cover: outdoor experimental study with thermodynamics analysis. J Therm Anal Calorim 143, 4025–4037 (2021). https://doi.org/10.1007/s10973-020-09311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09311-9

Keywords

Navigation