Evaluate the deflagration potential for commercial cylinder Li-ion cells under adiabatic confinement testing


The pressure elevation related to the variances in temperature for cylinder Li-ion cells including LiCoO2, LiMnO2, LiFePO4, and LiNi1/3Mn1/3Co1/3O2 cathodes was compared with their explosive behaviors. 50 and 100% state of charges Li-ion cells were examined the pressure rising rates in an open-circuit voltage condition using adiabatic calorimetry. A charged cell underwent an extremely runaway reaction at elevated temperatures and caused a thermal explosion due to high potential energy of the battery system and interaction with the components. This study presented the relationships between temperature and pressure in a Li-ion cell proceeding on a thermal explosion in the adiabatic confinement testing. The layer-structure LiCoO2 cell has the significant deflagration potential for condensed phase explosion. Moreover, the considerable quantities of gas eruption from a charged cell can be resulted in battery rupture and flames from a confined energy storage system. The critical temperature to thermal explosion model for a cylinder Li-ion cell was evaluated to classify their runaway reaction and deflagration potential.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


a :


b :


c v :

Total heat capacity, J g−1 K−1

d :


(dT/dt)ad :

Self-heating rate under an adiabatic condition, °C min−1

dp/dt :

Pressure rising rate, bar min−1

E 0 :

Li chemical potential, V

E a :

Apparent activation energy, eV

E dyn :

Thermal explosion expression, kJ

E iso :

Isothermal expansion, kJ

F :

Faraday constant, 96,487 C mol−1

G :

Change in Gibbs free energy, J

H :

Enthalpy, J

i :


j :


m :


k 0 :

Frequency factor, min−1

k B :

Boltzmann’s constant, 8.62e−5 eV K−1

m LIB :

Mass of the LIB, g

n :

The charged number carried by the exchanged Li ion

n i :

Moles of reactants, mole

n f :

Moles of products, mole

p :

Pressure, barg

p 0 :

Ambient pressure, 1.01 barg

p 1 :

Absolute pressure, barg

p cr :

Critical pressure in a turning from thermal runaway to explosion, barg

p peak :

Peak pressure, barg

p max :

Maximum pressure, barg

Q :

Heat generation, W

R :

Ideal gas constant, 8.314 J  K−1 mol−1

r :


S :

Entropy, J K−1


State of charge, %

t :


T :

Temperature, °C or K

T 0 :

Apparent exothermic onset temperature, °C or K

T cr :

Critical temperature from runaway to explosion, °C or K


Open-circuit voltage, V

v :

Volume of a Li-ion cell

W e :

Electric work, J

x :

Degree of conversion

α :

Ionic composition


  1. 1.

    Jhu CY, Wang YW, Shu CM, Chang JC, Wu HC. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater. 2011;192:99–107.

    CAS  PubMed  Google Scholar 

  2. 2.

    Julien C, Stoynov Z. Design considerations for lithium batteries. In: Julien C, Stoynov Z, editors. Materials for lithium-ion batteries. Dordrecht: Springer; 2000. p. 1–20.

    Google Scholar 

  3. 3.

    Patel P. Improving the lithium-ion battery. ACS Central Sci. 2015;1:161–2.

    CAS  Article  Google Scholar 

  4. 4.

    Wang Z, Ouyang D, Chen M, Wang X, Zhang Z, Wang J. Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes. J Therm Anal Calorim. 2019;136(6):2239–47.

    CAS  Article  Google Scholar 

  5. 5.

    Chen M, Dongxu O, Cao S, Liu J, Wang Z, Wang J. Effects of heat treatment and SoC on fire behaviors of lithium-ion batteries pack. J Therm Anal Calorim. 2019;136(6):2429–37.

    CAS  Article  Google Scholar 

  6. 6.

    Ouyang D, He Y, Chen M, Liu J, Wang J. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions. J Therm Anal Calorim. 2018;132(1):65–75.

    CAS  Article  Google Scholar 

  7. 7.

    Zhang Z, Ramadass P, Fang W. Safety of lithium-ion batteries. In: Pistoia G, editor. Lithium-ion batteries: advances and applications. New York: Elsevier; 2014. p. 409–35.

    Google Scholar 

  8. 8.

    Broussely M, Biensan P, Bonhomme F, Blanchard P, Herreyre S, Nechev K, et al. Main aging mechanisms in Li ion batteries. J Power Sources. 2005;146:90–6.

    CAS  Article  Google Scholar 

  9. 9.

    Federal Aviation Administration (FAA). Office of Security and Hazardous Materials Safety. Events with smoke, fire, extreme heat or explosion involving lithium batteries. USA FAA. 2018. https://www.faa.gov/hazmat/resources/lithium_batteries/media/Battery_incident_chart.pdf. Accessed 01 May 2018.

  10. 10.

    Ishikawa H, Mendoza Q, Sone Y, Umeda M. Study of thermal deterioration of lithium-ion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method. J Power Sources. 2012;198:236–42.

    CAS  Article  Google Scholar 

  11. 11.

    Vazquez-Arenas J, Gimenez LE, Fowler M, Han T, Chen SK. A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis. Energy Convers Manag. 2014;87:472–82.

    CAS  Article  Google Scholar 

  12. 12.

    Jhu CY, Wang YW, Wen CY, Chiang CC, Shu CM. Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries. J Therm Anal Calorim. 2011;106:159–63.

    CAS  Article  Google Scholar 

  13. 13.

    Doughty D, Roth EP. A general discussion of li-ion battery safety. Electrochem Soc Interface. 2012;21:37–44.

    CAS  Google Scholar 

  14. 14.

    Duh YS, Lee CY, Chen YL, Kao CS. Characterization on the exothermic behaviors of cathode materials reacted with ethylene carbonate in lithium-ion battery studied by differential scanning calorimeter (DSC). Thermochim Acta. 2016;642:88–94.

    CAS  Article  Google Scholar 

  15. 15.

    Chung YH, Jhang WC, Chen WC, Wang YW, Shu CM. Thermal hazard assessment for three C rates for a Li-polymer battery by using vent sizing package 2. J Therm Anal Calorim. 2017;127(1):809–17.

    CAS  Article  Google Scholar 

  16. 16.

    Duh YS, Tsai MT, Kao CS. Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle. J Therm Anal Calorim. 2017;127(1):983–93.

    CAS  Article  Google Scholar 

  17. 17.

    Lu TY, Chiang CC, Wu SH, Chen KC, Lin SJ, Wen CY, Shu CM. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter. J Therm Anal Calorim. 2013;114(3):1083–8.

    CAS  Article  Google Scholar 

  18. 18.

    Wang YW, Shu CM. Hazard characterizations of Li-ion batteries: thermal runaway evaluation by calorimetry methodology. In: Zhang Z, Zhang SS, editors. Rechargeable batteries: materials, technology and new trends. Cham: Springer; 2015. p. 419–54.

    Google Scholar 

  19. 19.

    Ozawa K. Lithium ion rechargeable batteries: materials, technology, and new applications. New York: Wiley; 2012. p. 1–9.

    Google Scholar 

  20. 20.

    Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–4.

    CAS  Article  Google Scholar 

  21. 21.

    Yazami R. Thermodynamics of electrode materials for lithium-ion batteries. In: Ozawa K, editor. Lithium ion rechargeable batteries: materials, technology, and new applications. New York: Wiley; 2012. p. 67–102.

    Google Scholar 

  22. 22.

    Al-Hallaj S, Maleki H, Hong JS, Selman JR. Thermal modeling and design considerations of lithium-ion batteries. J Power Sources. 1999;83:1–8.

    Article  Google Scholar 

  23. 23.

    Chen WC, Wang YW, Shu CM. Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge. J Power Sources. 2016;318:200–9.

    CAS  Article  Google Scholar 

  24. 24.

    Argue S, Davidson I, Ammundsen B, Paulsen J. A comparative study of the thermal stability of Li1−xCoO2 and Li3−xCrMnO5 in the presence of 1 M LiPF6 in 3: 7 EC/DEC electrolyte using accelerating rate calorimetry. J Power Sources. 2003;119:664–8.

    Article  Google Scholar 

  25. 25.

    Crowl DA. Fundamentals of fires and explosions. In: Crowl DA, editor. Understanding explosions. New York: American Institute of Chemical Engineers; 2003. p. 54–112.

    Google Scholar 

  26. 26.

    Gachot G, Grugeon S, Jimenez-Gordon I, Eshetu GG, Boyanov S, Lecocq A, Marlair G, Pilard S, Laruelle S. Gas chromatography/Fourier transform infrared/mass spectrometry coupling: a tool for Li-ion battery safety field investigation. Anal Methods. 2014;6:6120–4.

    CAS  Article  Google Scholar 

  27. 27.

    Smith JM, Ness HC. Introduction to chemical engineering thermodynamics. 7th ed. New York: McGraw Hill; 2005. p. 159–88.

    Google Scholar 

  28. 28.

    Hu L, Zhang SS, Zhang Z. Electrolytes for lithium and lithium-ion batteries. In: Zhang SS, Zhang Z, editors. Rechargeable batteries: materials, technology and new trends. Cham: Springer; 2015. p. 231–61.

    Google Scholar 

  29. 29.

    Golubkov AW, Fuchs D, Wanger J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V. Thermal-runaway experiments on consumer Li ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014;4:3633–42.

    CAS  Article  Google Scholar 

Download references


The author is indebted to the Ministry of Science and Technology of Taiwan (MOST 104-2221-E-039-005-MY2) for providing financial support of this study.

Author information



Corresponding author

Correspondence to Yih-Wen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, YW. Evaluate the deflagration potential for commercial cylinder Li-ion cells under adiabatic confinement testing. J Therm Anal Calorim 143, 661–670 (2021). https://doi.org/10.1007/s10973-020-09282-x

Download citation


  • Pressure elevation
  • Cylinder Li-ion cell
  • Thermal explosion
  • Adiabatic confinement testing
  • Deflagration potential