Thermochemical conversion of coconut waste: material characterization and identification of pyrolysis products

Abstract

In this work, coconut waste was evaluated for its potential for biofuel production via pyrolysis by considering physicochemical properties, kinetics of thermal degradation, and chemical composition of products generated. The kinetic of pyrolysis was investigated based on data obtained in a thermogravimetric analyzer at various heating rates. The independent parallel reactions model was used to describe the decomposition process. The activation energy (Ea) values estimated for extractives, hemicellulose, cellulose, and lignin were 194.7–197.7, 122.8–128.6, 244.1–250.5, and 53.0–64.0 kJ mol−1, respectively. The composition of the pyrolytic vapors was investigated via Py-GC/MS at different temperatures in an inert helium atmosphere. The results show that products of pyrolysis of the coconut waste can be a source of valuable chemicals, such as phenol, 1-hydroxy-2-propanone, furfural, and acetic acid. The increase of the reaction temperature resulted in the formation of hydrocarbons and in an increase in the number of aldehydes and ketones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Shen D, Jin W, Hu J, Xiao R, Luo K. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions. Renew Sustain Energy Rev. 2015;51:761–74.

    CAS  Article  Google Scholar 

  2. 2.

    Mangut V, Sabio E, Gañán J, González JF, Ramiro A, González CM, et al. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Process Technol. 2006;87:109–15.

    CAS  Article  Google Scholar 

  3. 3.

    Santos KG, Lobato FS, Lira TS, Murata VV, Barrozo MAS. Sensitivity analysis applied to independent parallel reaction model for pyrolysis of bagasse. Chem Eng Res Des. 2012;90:1989–96.

    CAS  Article  Google Scholar 

  4. 4.

    Oliveira TJP, Cardoso CR, Ataíde CH. Fast pyrolysis of soybean hulls: analysis of bio-oil produced in a fluidized bed reactor and of vapor obtained in analytical pyrolysis. J Therm Anal Calorim. 2015;120:427–38.

    CAS  Article  Google Scholar 

  5. 5.

    Carvalho WS, Oliveira TJ, Cardoso CR, Ataíde CH. Thermogravimetric analysis and analytical pyrolysis of a variety of lignocellulosic sorghum. Chem Eng Res Des. 2015;95:337–45.

    CAS  Article  Google Scholar 

  6. 6.

    Strezov V, Moghtaderi B, Lucas JA. Thermal study of decomposition of selected biomass samples. J Therm Anal Calorim. 2003;72:1041–8.

    CAS  Article  Google Scholar 

  7. 7.

    Chen D-Y, Zhang D, Zhu X-F. Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J Therm Anal Calorim. 2012;109:847–54.

    CAS  Article  Google Scholar 

  8. 8.

    Sandström L, Johansson A-C, Wiinikka H, Öhrman OGW, Marklund M. Pyrolysis of Nordic biomass types in a cyclone pilot plant—mass balances and yields. Fuel Process Technol. 2016;152:274–84.

    Article  CAS  Google Scholar 

  9. 9.

    Misse SE, Brillard A, Brilhac J-F, Obonou M, Ayina LM, Schönnenbeck C, et al. Thermogravimetric analyses and kinetic modeling of three Cameroonian biomass. J Therm Anal Calorim. 2018;132:1979–94.

    CAS  Article  Google Scholar 

  10. 10.

    Coconut–Tree of Life [Internet]. [cited 2019 Nov 4]. http://www.fao.org/3/Y3612E/y3612e03.htm#bm03. Accessed 4 Nov 2019.

  11. 11.

    Acda MN. Fuel pellets from downed coconut (Cocos nucifera) in super typhoon Haiyan. Biomass Bioenerg. 2015;83:539–42.

    CAS  Article  Google Scholar 

  12. 12.

    Johari K, Saman N, Song ST, Cheu SC, Kong H, Mat H. Development of coconut pith chars towards high elemental mercury adsorption performance—effect of pyrolysis temperatures. Chemosphere. 2016;156:56–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Doumer ME, Arízaga GGC, da Silva DA, Yamamoto CI, Novotny EH, Santos JM, et al. Slow pyrolysis of different Brazilian waste biomasses as sources of soil conditioners and energy, and for environmental protection. J Anal Appl Pyrol. 2015;113:434–43.

    CAS  Article  Google Scholar 

  14. 14.

    Liyanage CD, Pieris M. A Physico-Chemical Analysis of Coconut Shell Powder. Procedia Chemistry. 2015;16:222–8.

    CAS  Article  Google Scholar 

  15. 15.

    Sequeiros A, Labidi J. Characterization and determination of the S/G ratio via Py-GC/MS of agricultural and industrial residues. Ind Crops Prod. 2017;97:469–76.

    CAS  Article  Google Scholar 

  16. 16.

    Abdelouahed L, Leveneur S, Vernieres-Hassimi L, Balland L, Taouk B. Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J Therm Anal Calorim. 2017;129:1201–13.

    CAS  Article  Google Scholar 

  17. 17.

    Li C, Suzuki K. Kinetic analyses of biomass tar pyrolysis using the distributed activation energy model by TG/DTA technique. J Therm Anal Calorim. 2009;98:261–6.

    CAS  Article  Google Scholar 

  18. 18.

    Granada E, Eguía P, Comesaña JA, Patiño D, Porteiro J, Miguez JL. Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels. J Therm Anal Calorim. 2013;113:569–78.

    CAS  Article  Google Scholar 

  19. 19.

    Xavier TP, Lira TS, Schettino MA Jr, Barrozo MAS. A study of pyrolysis of macadamia nut shell: parametric sensitivity analysis of the IPR model. Braz J Chem Eng. 2016;33:115–22.

    CAS  Article  Google Scholar 

  20. 20.

    Lira TS, Santos KG, Murata VV, Gianesella M, Barrozo MAS. The use of nonlinearity measures in the estimation of kinetic parameters of sugarcane bagasse pyrolysis. Chem Eng Technol. 2010;33:1699–705.

    CAS  Article  Google Scholar 

  21. 21.

    Basu P. Biomass gasification and pyrolysis: practical design and theory. Amsterdam: Elsevier; 2010.

    Google Scholar 

  22. 22.

    Morais JPS. Procedures for Lignocellulosic Analysis. Embrapa Tropical Agroindustry Documents, 236). 2011; Fortaleza: Embrapa Tropical Agroindustry 54 p; 2011. (In Portuguese).

  23. 23.

    Morgan TJ, George A, Boulamanti AK, Álvarez P, Adanouj I, Dean C, et al. Quantitative X-ray fluorescence analysis of biomass (switchgrass, corn stover, eucalyptus, beech, and pine wood) with a typical commercial multi-element method on a WD-XRF spectrometer. Energy Fuels. 2015;29:1669–85.

    CAS  Article  Google Scholar 

  24. 24.

    Manyà JJ, Velo E, Puigjaner L. Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res. 2003;42:434–41.

    Article  CAS  Google Scholar 

  25. 25.

    Gómez CJ, Manyà JJ, Velo E, Puigjaner L. Further applications of a revisited summative model for kinetics of biomass pyrolysis. Ind Eng Chem Res. 2004;43:901–6.

    Article  CAS  Google Scholar 

  26. 26.

    Lobato FS, Steffen V, Arruda EB, Barrozo MAS. Estimation of drying parameters in rotary dryers using differential evolution. J Phys Conf Ser. 2008;135:012063.

    Article  Google Scholar 

  27. 27.

    Barrozo MAS, Murata VV, Costa SM. The drying of soybean seeds in countercurrent and concurrent moving bed dryers. Dry Technol. 1998;16:2033–47.

    CAS  Article  Google Scholar 

  28. 28.

    Barrozo MAS, Sanori DJM, Freire JT, Achcar JA. Discrimination of equilibrium moisture equations for soybean usmg nonlinearity measure. Dry Technol. 1996;14:1779–94.

    CAS  Article  Google Scholar 

  29. 29.

    Rambo MKD, Schmidt FL, Ferreira MMC. Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta. 2015;144:696–703.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Kelkar S, Li Z, Bovee J, Thelen KD, Kriegel RM, Saffron CM. Pyrolysis of North-American grass species: effect of feedstock composition and taxonomy on pyrolysis products. Biomass Bioenerg. 2014;64:152–61.

    CAS  Article  Google Scholar 

  31. 31.

    Phichai K, Pragrobpondee P, Khumpart T, Hirunpraditkoon S. Prediction heating values of lignocellulosics from biomass characteristics. Int J Chem Mol Nuclear Mater Metall Eng. 2013;7:4.

    Google Scholar 

  32. 32.

    Tsai WT, Lee MK, Chang YM. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrol. 2006;76:230–7.

    CAS  Article  Google Scholar 

  33. 33.

    Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel. 2014;128:162–9.

    CAS  Article  Google Scholar 

  34. 34.

    Yin C-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel. 2011;90:1128–32.

    CAS  Article  Google Scholar 

  35. 35.

    Shan HZ, Zhuo SJ, Shen RX, Sheng C. Mineralogical effect correction in wavelength dispersive X-ray florescence analysis of pressed powder pellets. Spectrochim Acta Part B. 2008;63:612–6.

    Article  CAS  Google Scholar 

  36. 36.

    Kovacs H, Szemmelveisz K, Koós T. Theoretical and experimental metals flow calculations during biomass combustion. Fuel. 2016;185:524–31.

    CAS  Article  Google Scholar 

  37. 37.

    Tan Z, Lagerkvist A. Phosphorus recovery from the biomass ash: a review. Renew Sustain Energy Rev. 2011;15:3588–602.

    CAS  Article  Google Scholar 

  38. 38.

    Clery DS, Mason PE, Rayner CM, Jones JM. The effects of an additive on the release of potassium in biomass combustion. Fuel. 2018;214:647–55.

    CAS  Article  Google Scholar 

  39. 39.

    Shafizadeh F, DeGroot WF. Combustion Characteristics of Cellulosic Fuels. Thermal Uses and Properties of Carbohydrates and Lignins [Internet]. Elsevier; 1976 [cited 2019 Nov 5]. pp. 1–17. https://linkinghub.elsevier.com/retrieve/pii/B9780126377507500054. Accessed 5 Nov 2019.

  40. 40.

    Wu D, Wang Y, Wang Y, Li S, Wei X. Release of alkali metals during co-firing biomass and coal. Renew Energy. 2016;96:91–7.

    CAS  Article  Google Scholar 

  41. 41.

    Zhou L, Jia Y, Nguyen T-H, Adesina AA, Liu Z. Hydropyrolysis characteristics and kinetics of potassium-impregnated pine wood. Fuel Process Technol. 2013;116:149–57.

    CAS  Article  Google Scholar 

  42. 42.

    Popescu C-M, Popescu M-C, Singurel G, Vasile C, Argyropoulos DS, Willfor S. Spectral characterization of eucalyptus wood. Appl Spectrosc. 2007;61:1168–77.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Jose S, Mishra L, Basu G, Kumarsamanta A. Study on reuse of coconut fiber chemical retting bath. Part II—recovery and characterization of Lignin. J Nat Fibers. 2017;14:1–9.

    Article  CAS  Google Scholar 

  44. 44.

    Chen Z, Hu M, Zhu X, Guo D, Liu S, Hu Z, et al. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Biores Technol. 2015;192:441–50.

    CAS  Article  Google Scholar 

  45. 45.

    Andrade LA, Barrozo MAS, Vieira LGM. Thermo-chemical behavior and product formation during pyrolysis of mango seed shell. Ind Crops Prod. 2016;85:174–80.

    CAS  Article  Google Scholar 

  46. 46.

    Akalın MK, Karagöz S. Analytical pyrolysis of biomass using gas chromatography coupled to mass spectrometry. TrAC Trends Anal Chem. 2014;61:11–6.

    Article  CAS  Google Scholar 

  47. 47.

    Said M, John G, Mhilu C, Manyele S. The study of kinetic properties and analytical pyrolysis of coconut shells. J Renew Energy. 2015;2015:1–8.

    Article  CAS  Google Scholar 

  48. 48.

    Lu Q, Wang Z, Dong C, Zhang Z, Zhang Y, Yang Y, et al. Selective fast pyrolysis of biomass impregnated with ZnCl2: furfural production together with acetic acid and activated carbon as by-products. J Anal Appl Pyrol. 2011;91:273–9.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian institutions CAPES (Federal Agency for the Support and Improvement of Higher Education), CNPq (National Council for Scientific and Technological Development), and FAPEMIG (Minas Gerais State Research Foundation) for supporting this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcos Antonio de Souza Barrozo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borel, L.D.M.S., de Lira, T.S., Ataíde, C.H. et al. Thermochemical conversion of coconut waste: material characterization and identification of pyrolysis products. J Therm Anal Calorim 143, 637–646 (2021). https://doi.org/10.1007/s10973-020-09281-y

Download citation

Keywords

  • Coconut waste
  • Thermogravimetric analysis
  • Kinetics parameters
  • Analytical pyrolysis