Long-term hydration behavior and pore structure development of cement–limestone binary system


This study concerns the long-term hydration behavior and pore structure of cement paste incorporated with limestone powder. The cement paste specimens are investigated by isothermal calorimetry, X-ray diffraction, thermogravimetric analysis and mercury intrusion porosimetry. The dosages of limestone powder are 5, 15 and 25%, respectively. The experimental results are collected within 180 days. From the obtained results, 25% limestone powder accelerates the transformation of hemicarboaluminate to monocarboaluminate. The ettringite stably exists in cement paste incorporated with limestone powder at all curing ages. The presence of limestone powder does not significantly influence the value of the critical pore width (Dcr) of cement pastes at later curing ages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Ali Akbar R. Cement replacement materials: properties, durability, sustainability. New York: Springer; 2014. ISBN 978-3-642-36720-5.

    Google Scholar 

  2. 2.

    Popescu CD, Muntean M, Sharp JH. Industrial trial production of low energy belite cement. Cem Concr Compos. 2003;25(7):689–93.

    CAS  Article  Google Scholar 

  3. 3.

    Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 2004;34:1489–98.

    CAS  Article  Google Scholar 

  4. 4.

    Deja J, Uliasz-Bochenczyk A, Mokrzycki E. CO2 emissions from Polish cement industry. Int J Greenh Gas Control. 2010;4(4):583–8.

    CAS  Article  Google Scholar 

  5. 5.

    Han F, Zhang Z, Liu J, Yan P. Effect of water-to-binder ratio on the hydration kinetics of composite binder containing slag or fly ash. J Therm Anal Calorim. 2017;128:855–65.

    CAS  Article  Google Scholar 

  6. 6.

    Sun J, Shen X, Tan G, Tanner J. Compressive strength and hydration characteristics of high-volume fly ash concrete prepared from fly ash. J Therm Anal Calorim. 2019;136:565–80.

    CAS  Article  Google Scholar 

  7. 7.

    Mazloom M, Ramezanianpour AA, Brooks JJ. Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos. 2004;26(4):347–57.

    CAS  Article  Google Scholar 

  8. 8.

    Shuhua L, Faguang L, Lihua L. Supplementary cementing materials used in concrete. China: Architecture & Building Press; 2010. ISBN 978-7-80227-7-687.

    Google Scholar 

  9. 9.

    Xu Z, Zhou Z, Du P, Cheng X. Effects of nano-limestone on hydration properties of tricalcium silicate. J Therm Anal Calorim. 2017;129:75–83.

    CAS  Article  Google Scholar 

  10. 10.

    Hooton D, Nokken M, Thomas MDA. Portland-limestone cement: state-of-the-art report and gap analysis for CSA A 3000; 2007.

  11. 11.

    Lollini F, Redaelli E, Bertolini L. Effects of portland cement replacement with limestone on the properties of hardened concrete. Cem Concr Compos. 2014;46:32–40.

    CAS  Article  Google Scholar 

  12. 12.

    Douglas Hooton R. Current developments and future needs in standards for cementitious materials. Cem Concr Res. 2015;78:165–77.

    CAS  Article  Google Scholar 

  13. 13.

    Tennis PD, Thomas MDA, Weiss WJ. State-of-the-art report on use of limestone in cements at levels of up to 15%; 2011.

  14. 14.

    GB 175-2007 Common Portland cement. China building materials industry association, Beijing, China; 2007.

  15. 15.

    CSA A3000-13 Cementitious materials compendium, Canadian Standards Association, Toronto, Ontario, Canada; 2013.

  16. 16.

    European standards EN 197-1 Cement Composition; 2000.

  17. 17.

    Bonavetti VL, Rahhal VF, Irassar EF. Studies on the carboaluminate formation in limestone filler-blended cements. Cem Concr Res. 2001;31(6):853–9.

    CAS  Article  Google Scholar 

  18. 18.

    Lothenbach B, Le Saout G, Gallucci E, Scrivener K. Influence of limestone on the hydration of Portland cements. Cem Concr Res. 2008;38(6):848–60.

    CAS  Article  Google Scholar 

  19. 19.

    Taylor HF. Cement chemistry. London: Thomas Telford; 1997. ISBN 0-7277-2592-0.

    Google Scholar 

  20. 20.

    Matschei T, Lothenbach B, Glasser FP. The role of calcium carbonate in cement hydration. Cem Concr Res. 2007;37(4):551–8.

    CAS  Article  Google Scholar 

  21. 21.

    Soroka I, Stern N. Calcareous fillers and the compressive strength of portland cement. Cem Concr Res. 1976;6(3):367–76.

    CAS  Article  Google Scholar 

  22. 22.

    Detwiler R, Tennis PD. The use of limestone in portland cement: a state-of-the-art review. Skokie: Portland Cement Association; 1996.

    Google Scholar 

  23. 23.

    Vance K, Aguayo M, Oey T, Sant G, Neithalath N. Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cem Concr Compos. 2013;39:93–103.

    CAS  Article  Google Scholar 

  24. 24.

    Berodier E, Scrivener K, Scherer G. Understanding the filler effect on the nucleation and growth of C-S-H. J Am Ceram Soc. 2014;97(12):3764–73.

    CAS  Article  Google Scholar 

  25. 25.

    Berodier E, Scrivener K. Evolution of pore structure in blended systems. Cem Concr Res. 2015;73:25–35.

    CAS  Article  Google Scholar 

  26. 26.

    Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem Concr Compos. 2005;27(4):425–8.

    CAS  Article  Google Scholar 

  27. 27.

    Senhadji Y, Escadeillas G, Mouli M, Khelafi H. Benosman, Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. J Powder Technol. 2014;254:314–23.

    CAS  Article  Google Scholar 

  28. 28.

    Tsivilis S, Tsantilas J, Kakali G, Chaniotakis E, Sakellariou A. The permeability of Portland limestone cement concrete. Cem Concr Res. 2003;33(9):1465–71.

    CAS  Article  Google Scholar 

  29. 29.

    Ye G, Liu X, Schutter GD, Poppe AM, Taerwe L. Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cem Concr Compos. 2007;29(2):94–102.

    CAS  Article  Google Scholar 

  30. 30.

    Liu S, Yan P. Effect of limestone powder on microstructure of concrete. J Wuhan Univ Technol Mater Sci Ed. 2010;25(2):328–31.

    CAS  Article  Google Scholar 

  31. 31.

    Moon GD, Oh S, Sang HJ, Choi YC. Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete. Constr Build Mater. 2017;135:129–36.

    CAS  Article  Google Scholar 

  32. 32.

    Pipilikaki P, Beazi-Katsioti M. The assessment of porosity and pore size distribution of limestone Portland cement pastes. Constr Build Mater. 2009;23(5):1966–70.

    Article  Google Scholar 

  33. 33.

    Li C, Jiang L, Xu N, Jiang S. Pore structure and permeability of concrete with high volume of limestone powder addition. J Powder Technol. 2018;338:416–24.

    CAS  Article  Google Scholar 

  34. 34.

    Das S, Aguayo M, Dey V, Kachala R, Mobasher B, Sant G, Neithalath N. The fracture response of blended formulations containing limestone powder: evaluations using two-parameter fracture model and digital image correlation. Cem Concr Compos. 2014;53(10):316–26.

    CAS  Article  Google Scholar 

  35. 35.

    Melchers RE, Pape TM. The durability of reinforced concrete structures in marine environments. In: Australasian structural engineering conference (ASEC2012). 2012: engineers Australia.

  36. 36.

    Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS, Scrivener KL, Thomas JJ. Mechanisms of cement hydration. Cem Concr Res. 2011;41(12):1208–23.

    CAS  Article  Google Scholar 

  37. 37.

    Sato T, Diallo F. Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. Transp Res Rec. 2010;2141:61–7.

    CAS  Article  Google Scholar 

  38. 38.

    Thongsanitgarn P, Wongkeo W, Chaipanich A, Poon CS. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: effect of limestone particle size. Constr Build Mater. 2014;66:410–7.

    Article  Google Scholar 

  39. 39.

    Zajac M, Rossberg A, Le Saout G, Lothenbach B. Influence of limestone and anhydrite on the hydration of Portland cements. Cem Concr Compos. 2014;46:99–108.

    CAS  Article  Google Scholar 

  40. 40.

    De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res. 2011;41(3):279–91.

    Article  CAS  Google Scholar 

  41. 41.

    Celik K, Hay R, Hargis CW, Moon J. Effect of volcanic ash pozzolan or limestone replacement on hydration of Portland cement. Constr Build Mater. 2019;197:803–12.

    CAS  Article  Google Scholar 

  42. 42.

    Wang D, Shi C, Farzadnia N, Shi Z, Jia H. A review on effects of limestone powder on the properties of concrete. Constr Build Mater. 2018;192:153–66.

    CAS  Article  Google Scholar 

  43. 43.

    Monteiro P, Mehta P. Concrete: microstructure, properties and materials. 3rd ed. New York: McGraw-Hill; 2006. ISBN 0071797874.

    Google Scholar 

  44. 44.

    De Weerdt K, Kjellsen KO, Sellevold E, Justnes H. Synergy between fly ash and limestone powder in ternary cements. Cem Concr Compos. 2011;33(1):30–8.

    Article  CAS  Google Scholar 

  45. 45.

    Antoni M, Rossen J, Martirena F, Scrivener K. Cement substitution by a combination of metakaolin and limestone. Cem Concr Res. 2012;42:1579–89.

    CAS  Article  Google Scholar 

  46. 46.

    Marsh BK, Day RL. Pozzolanic and cementitious reactions of fly ash in blended cement pastes. Cem Concr Res. 1988;18(2):301–10.

    CAS  Article  Google Scholar 

  47. 47.

    Yu Z. Microstructure development and transport properties of portland cement-fly ash binary systems. Ph.D. thesis, Technische Universiteit Delft; 2015.

  48. 48.

    Wang D, Shi C, Farzadnia N, Shi Z, Jia H, Ou Z. A review on use of limestone powder in cement-based materials: mechanism, hydration and microstructures. Constr Build Mater. 2018;181:659–72.

    CAS  Article  Google Scholar 

  49. 49.

    Scrivener K, Snellings R, Lothenbach L. A practical guide to microstructural analysis of cementitious materials. Boca Raton: CRC Press; 2016. ISBN 978-1-4987-3867-5.

    Google Scholar 

  50. 50.

    Aligizaki KK. Pore structure of cement-based materials: testing: interpretation and requirements. Boca Raton: CRC Press; 2006. ISBN 0-419-22800-4.

    Google Scholar 

Download references


The authors would like to acknowledge the financial supports provided by the National Key Research and Development Program of China (2017YFB0309902), the National Natural Science Foundation of China (51708290), the Natural Science Foundation of Jiangsu Province, China (BK20161001), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Changjiang Scholars and Innovative Research Team in University (No. IRT_15R35).

Author information



Corresponding author

Correspondence to Zhuqing Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Yu, Z., Shi, H. et al. Long-term hydration behavior and pore structure development of cement–limestone binary system. J Therm Anal Calorim 143, 843–852 (2021). https://doi.org/10.1007/s10973-020-09273-y

Download citation


  • Portland cement
  • Limestone powder
  • Thermal analysis
  • Hydration
  • Pore structures