Skip to main content
Log in

Experimental analysis of commercial LiFePO4 battery life span used in electric vehicle under extremely cold and hot thermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To widely commercialize electric vehicles more efforts for their life improvement seem extremely inevitable. Thermal conditions can have profound and nonlinear effects on the degradation rate of an electric vehicle battery pack as well as its performance and safety level. In the current study, both cycle life and calendar life of a commercial LiFePO4 cell are investigated experimentally by means of capacity fading and resistance increment evaluation for 4 different thermal conditions from extremely cold condition of − 20 °C—which is not well studied in the literature—till hot condition of 55 °C. The calendar life tests show that the best condition for storing cells is at 5 °C and 50% SOC and the cycle life tests demonstrate that the best operating temperature is 25 °C based on the dynamic stress test discharge/charge profile (a test profile for electric vehicles). It is also found that the capacity fading and resistance increment at a high temperature such as 50 °C are destructively significant. The presented curves in this paper can also serve as an aging data source for further work on battery lifetime modeling and diagnostics. The role of temperature on the degradation level is also discovered via scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ehsani M, Gao Y, Emadi A. Modern electric, hybrid electric and fuel cell vehicles: fundamental, theory and design. 2nd ed. Washington, DC: CRC Press; 2009.

    Google Scholar 

  2. Rahn CD, Wang CY. Battery systems engineering. 1st ed. New Jersey: Wiley; 2013.

    Google Scholar 

  3. Kiani M, Mousavi M, Rahmanifar M. Synthesis of nano-and micro-particles of LiMn2O4: electrochemical investigation and assessment as a cathode in Li battery. Int J Electrochem Sci. 2011;6:2581–95.

    CAS  Google Scholar 

  4. Yang K, An JJ, Chen S. Influence of additives on the thermal behavior of nickel/metal hydride battery. J Therm Anal Calorim. 2010;102:953–9.

    CAS  Google Scholar 

  5. Yang K, Li DH, Chen S, Wu F. Thermal behavior of nickel/metal hydride battery during charging and discharging. J Therm Anal Calorim. 2009;95:455–9.

    CAS  Google Scholar 

  6. An JJ, Chen S, Yang K. Temperature characterization analysis of LiFePO4/C power battery during charging and discharging. J Therm Anal Calorim. 2010;99:515–21.

    Google Scholar 

  7. Zhao XW, Zhang GY, Yang L, Qiang JX, Chen ZQ. A new charging mode of Li-ion batteries with LiFePO4/C composites under low temperature. J Therm Anal Calorim. 2011;104:561–7.

    CAS  Google Scholar 

  8. Yang K, Li DH, Chen S, Wu F. Thermal behavior of nickel–metal hydride battery during charging at a wide range of ambient temperatures. J Therm Anal Calorim. 2011;105:383–8.

    Google Scholar 

  9. Guo Z, Xia Q, Yan P, Du Z. Study on critical ambient temperature of cylindrical battery. J Therm Anal Calorim. 2015;119:2141–9.

    CAS  Google Scholar 

  10. Ouyang D, He Y, Chen M, Liu J, Wang J. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions. J Therm Anal Calorim. 2017;132:65–75.

    Google Scholar 

  11. Lu TY, Chiang CC, Wu SH, Chen KC, Lin SJ, Wen CY, Shu CM. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter. J Therm Anal Calorim. 2013;114:1083–8.

    CAS  Google Scholar 

  12. Chen M, Zhou D, Chen X, Zhang W, Liu J, Yuen R, Wang J. Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim. 2015;122:755–63.

    CAS  Google Scholar 

  13. Chen WC, Li JD, Shu CM, Wang YW. Effects of thermal hazard on 18650 lithium-ion battery under different states of charge. J Therm Anal Calorim. 2015;121:525–31.

    CAS  Google Scholar 

  14. Chung YH, Jhang WC, Chen WC, Wang YW, Shu CM. Thermal hazard assessment for three C rates for a Li-polymer battery by using vent sizing package 2. J Therm Anal Calorim. 2016;127:809–17.

    Google Scholar 

  15. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.

    CAS  PubMed  Google Scholar 

  16. Emadi A, Petrunic JG. Automotive industry and electrification. 1st ed. Washington: CRC Press; 2015.

    Google Scholar 

  17. Wen CY, Jhu CY, Wang YW, Chiang CC, Shu CM. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2. J Therm Anal Calorim. 2012;109:1297–302.

    CAS  Google Scholar 

  18. Hsieh TY, Duh YS, Kao CS. Evaluation of thermal hazard for commercial 14500 lithium-ion batteries. J Therm Anal Calorim. 2014;116:1491–5.

    CAS  Google Scholar 

  19. Jhang WC, Chen WC, Wang YW, Chang RH, Shu CM. Thermal stability evaluation of lithium-ion polymer batteries. J Therm Anal Calorim. 2015;122:1099–105.

    CAS  Google Scholar 

  20. Duh YS, Tsai MT, Kao CS. Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle. J Therm Anal Calorim. 2017;127:983–93.

    CAS  Google Scholar 

  21. Zhang H, Xia Q, Guo Z, Du Z. Study on the criticality of thermal safety of cylindrical battery. J Therm Anal Calorim. 2017;123:1–11.

    Google Scholar 

  22. Wang Q, Zhao X, Ye J, Sun Q, Ping P, Sun J. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim. 2016;124:417–28.

    Google Scholar 

  23. Saxena S, Hendricks C, Pecht M. Cycle life testing and modeling of graphite/LiCoO 2 cells under different state of charge ranges. J Power Sources. 2016;327:394–400.

    CAS  Google Scholar 

  24. Wu Y, Keil P, Schuster SF, Jossen A. Impact of temperature and discharge rate on the aging of a LiCoO2/LiNi0.8Co0.15Al0.05O2 lithium-ion pouch cell. J Electrochem Soc. 2017;164:1438–45.

    Google Scholar 

  25. Palacín MR. Understanding ageing in Li-ion batteries: a chemical issue. Chem Soc Rev. 2018;47:4924–33.

    PubMed  Google Scholar 

  26. Nagpure SC, Bhushan B, Babu S. Multi-scale characterization studies of aged Li-ion large format cells for improved performance: an overview. J Electrochem Soc. 2013;160:A2111–54.

    CAS  Google Scholar 

  27. Ning G, Popov BN. Cycle life modeling of lithium-ion batteries. J Electrochem Soc. 2004;151:A1584.

    CAS  Google Scholar 

  28. Eddahech A, Briat O, Henry H, Delétage J, Woirgard E, Vinassa J. Ageing monitoring of lithium-ion cell during power cycling tests. Microelectron Reliab. 2011;51:1968–71.

    CAS  Google Scholar 

  29. Kassem M, Bernard J, Revel R, Pélissier S, Duclaud F, Delacourt C. Calendar aging of a graphite/LiFePO4 cell. J Power Sources. 2012;208:296–305.

    CAS  Google Scholar 

  30. Käbitz S, Bernhard J, Ecker M, Yurdagel Y, Emmermacher B, André D, Mitsch T, Sauer DU. Cycle and calendar life study of a graphite LiNi1/3Mn1/3Co1/3O2 Li-ion high energy system. Part A: full cell characterization. J Power Sources. 2013;239:572–83.

    Google Scholar 

  31. Ecker M, Nieto N, Käbitz S, Schmalstieg J, Blanke H, Warnecke A, Sauer DU. Calendar and cycle life study of Li (NiMnCo)O2-based 18650 lithium-ion batteries. J Power Sources. 2014;248:839–51.

    CAS  Google Scholar 

  32. Grolleau S, Delaille A, Gualous H, Gyan P. Calendar aging of commercial graphite/LiFePO 4 cell e predicting capacity fade under time dependent storage conditions. J Power Sources. 2014;255:450–8.

    CAS  Google Scholar 

  33. Watanabe S, Kinoshita M, Hosokawa T, Morigaki K. Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). J Power Sources. 2014;258:210–7.

    CAS  Google Scholar 

  34. Stiaszny B, Ziegler JC, Krauß EE, Schmidt JP, Ivers-tiffée E. Electrochemical characterization and post-mortem analysis of aged cycle aging. J Power Sources. 2014;251:439–50.

    CAS  Google Scholar 

  35. Gandiaga I, Villarreal I. Calendar ageing analysis of a LiFePO4/graphite cell with dynamic model validations: towards realistic lifetime predictions. J Power Sources. 2014;272:45–57.

    Google Scholar 

  36. Gandiaga I, Villarreal I. Cycle ageing analysis of a LiFePO4/graphite cell with dynamic model validations: towards realistic lifetime predictions. J Power Sources. 2015;275:573–87.

    Google Scholar 

  37. Groot J, Swierczynski M, Stan AI, Kær SK. On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents. J Power Sources. 2015;286:475–87.

    CAS  Google Scholar 

  38. Fleischhammer M, Waldmann T, Bisle G, Hogg BI, Wohlfahrt-Mehrens M. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries. J Power Sources. 2015;274:432–9.

    CAS  Google Scholar 

  39. Ouyang M, Feng X, Han X, Lu L, Li Z, He X. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery. Appl Energy. 2016;165:48–59.

    CAS  Google Scholar 

  40. Marques AP, Garcia R, Kulay L, Freire F. Comparative life cycle assessment of lithium-ion batteries for electric vehicles addressing capacity fade. J Clean Prod. 2019;229:787–94.

    CAS  Google Scholar 

  41. Cao W, Li J, Wu Z. Cycle-life and degradation mechanism of LiFePO4-based lithium-ion batteries at room and elevated temperatures. Ionics. 2016;22:1791–9.

    CAS  Google Scholar 

  42. Ruiz V, Pfrang A, Kriston A, Omar N, Van den Bossche P, Boon-Brett L. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew Sustain Energy Rev. 2018;81:1427–52.

    CAS  Google Scholar 

  43. Barré A, Suard F, Gérard M, Montaru M, Riu D. Statistical analysis for understanding and predicting battery degradations in real-life electric vehicle use. J Power Sources. 2014;245:846–56.

    Google Scholar 

  44. Schmalstieg J, Käbitz S, Ecker M, Sauer DU. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. J Power Sources. 2014;257:325–34.

    CAS  Google Scholar 

  45. Schweiger HG, Obeidi O, Komesker O, Raschke A, Schiemann M, Zehner C, Gehnen M, Keller M, Birke P. Comparison of several methods for determining the internal resistance of lithium ion cells. Sensors. 2010;10:5604–25.

    CAS  PubMed  Google Scholar 

  46. Ratnakumar BV, Smart MC, Whitcanack LD, Ewell RC. The impedance characteristics of Mars Exploration Rover Li-ion batteries. J Power Sources. 2006;159:1428–39.

    CAS  Google Scholar 

  47. Abraham DP, Reynolds EM, Sammann E, Jansen AN, Dees DW. Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes. Electrochim Acta. 2005;51:502–10.

    CAS  Google Scholar 

  48. Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources. 2013;241:680–9.

    Google Scholar 

  49. Bodenes L, Dedryvère R, Martinez H, Fischer F, Tessier C, Pérès J-P. Lithium-ion batteries working at 85 C: aging phenomena and electrode/electrolyte interfaces studied by XPS. J Electrochem Soc. 2012;159:A1739–46.

    CAS  Google Scholar 

  50. Scoch J, Gaerttner J, Schuller A, Setzer T. Enhancing electric vehicle sustainability through battery life optimal charging. Transp Res Part B: Methodol. 2018;112:1–18.

    Google Scholar 

  51. Nunotani K, Yoshida F, Kamiya Y, Daisho Y, Abe K, Kono M, Matsuo H. Development and performance evaluation of lithium iron phosphate battery with superior rapid charging performance. In: Vehicle Power and Propulsion Conference (VPPC). IEEE; 2011. pp. 1–4.

  52. Crompton TR. Battery reference book. 3rd ed. Oxford: Newnes; 2000.

    Google Scholar 

  53. Zhang Y, Wang CY, Tang X. Cycling degradation of an automotive LiFePO4 lithium-ion battery. J Power Sources. 2011;196:1513–20.

    CAS  Google Scholar 

  54. Agubra V, Fergus J. Lithium ion battery anode aging mechanisms. Materials. 2013;6:1310–25.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Molaeimanesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaeimanesh, G.R., Mousavi-Khoshdel, S.M. & Nemati, A.B. Experimental analysis of commercial LiFePO4 battery life span used in electric vehicle under extremely cold and hot thermal conditions. J Therm Anal Calorim 143, 3137–3146 (2021). https://doi.org/10.1007/s10973-020-09272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09272-z

Keywords

Navigation