Experimental investigation of the hydrothermal aspects of water–Fe3O4 nanofluid inside a twisted tube


The impetus of this experimental investigation is to analyze the laminar forced convection of water-based nanofluid (NF) including Fe3O4 nanoparticles inside a twisted tube. The impacts of NF concentration (0% < \( \varphi \) < 2%), Reynolds number (500 < \( {\text{Re}} \) < 2000) and twist pitch (10–100 mm) on the average Nusselt number (\( \overline{\text{Nu}} \)), friction factor, and overall hydrothermal performance indicator are assessed, and the results are compared with those of the plain tube. It was found that the \( \overline{\text{Nu}} \) of NF rises with boosting \( \varphi \) and \( {\text{Re}} \), while it declines with boosting twist pitch. In addition, it was found that the rise of \( \varphi \) causes a rise in the friction factor, while it diminishes with the rise of \( {\text{Re}} \) and twist pitch. Moreover, the results depicted that the overall hydrothermal performance of NF in the twisted tube is superior to that of the water in the plain tube. The best overall hydrothermal performance of the NF occurred at \( \varphi \) = 2%, \( {\text{Re}} \) = 2000 and twist pitch = 10 mm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


A :

Heat transfer surface area (m2)

\( c_{\text{p}} \) :

Specific heat capacity (J kg−1 K−1)

\( D_{\text{h}} \) :

Hydraulic diameter (m)

f :

Friction factor (–)

h :

Convection coefficient (W m−2 K−1)

k :

Conduction coefficient (W m−1 K−1)

L :

Tube length (m)

\( \dot{m} \) :

Mass flow rate (kg s−1)


Nusselt number (–)


Prandtl number (–)

\( \Delta p \) :

Pressure drop (Pa)

Q :

Convection heat transfer rate (W)


Reynolds number (–)

\( T_{\text{b}} \) :

Average bulk fluid temperature (°C)

\( T_{\text{in}} \) :

Inlet temperature (°C)

\( T_{\text{out}} \) :

Outlet temperature (°C)

\( T_{\text{w}} \) :

Average wall temperature (°C)

V :

Velocity (m s−1)

\( \rho \) :

Density (kg m−3)

\( \varphi \) :

Volume concentration (%)

\( \mu \) :

Viscosity (kg m−1 s−1)

\( \eta \) :

Performance indicator (–)






Plain tube


Twisted tube




  1. 1.

    Akbarzadeh M, Rashidi S, Masoodi R, Samimi-Abianeh O. Effect of transverse twisted baffles on performance and irreversibilities in a duct. J Thermophys Heat Transf. 2019;33:49–62.

    CAS  Article  Google Scholar 

  2. 2.

    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60.

    CAS  Article  Google Scholar 

  3. 3.

    Rashidi S, Kashefi MH, Hormozi F. Potential applications of inserts in solar thermal energy systems—a review to identify the gaps and frontier challenges. Sol Energy. 2018;171:929–52.

    Article  Google Scholar 

  4. 4.

    Tiwari R, Andhare RS, Shooshtari A, Ohadi M. Development of an additive manufacturing-enabled compact manifold microchannel heat exchanger. Appl Therm Eng. 2019;147:781–8.

    CAS  Article  Google Scholar 

  5. 5.

    Naicker SS, Rees SJ. Long-term high frequency monitoring of a large borehole heat exchanger array. Renew Energy. 2020;145:1528–42.

    Article  Google Scholar 

  6. 6.

    Farnam M, Khoshvaght-Aliabadi M, Asadollahzadeh MJ. Heat transfer intensification of agitated U-tube heat exchanger using twisted-tube and twisted-tape as passive techniques. Chem Eng Process Process Intensif. 2018;133:137–47.

    CAS  Article  Google Scholar 

  7. 7.

    Wu CC, Chen CK, Yang YT, Huang KH. Numerical simulation of turbulent flow forced convection in a twisted elliptical tube. Int J Therm Sci. 2018;132:199–208.

    Article  Google Scholar 

  8. 8.

    Samruaisin P, Kunlabud S, Kunnarak K, Chuwattanakul V, Eiamsa-ard S. Intensification of convective heat transfer and heat exchanger performance by the combined influence of a twisted tube and twisted tape. Case Stud Therm Eng. 2019;14:100489.

    Article  Google Scholar 

  9. 9.

    Li X, Zhu D, Sun J, Mo X, Liu S. Heat transfer and pressure drop for twisted oval tube bundles with staggered layout in crossflow of air. Appl Therm Eng. 2019;148:1092–8.

    Article  Google Scholar 

  10. 10.

    Li X, Zhu D, Yin Y, Tu A, Liu S. Parametric study on heat transfer and pressure drop of twisted oval tube bundle with in line layout. Int J Heat Mass Transf. 2019;135:860–72.

    Article  Google Scholar 

  11. 11.

    Al-Rashed AAAA, Shahsavar A, Rasooli O, Moghimi MA, Karimipour A, Tran MD. Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink. Int Commun Heat Mass Transf. 2019;104:118–26.

    CAS  Article  Google Scholar 

  12. 12.

    Shahsavar A, Khanmohammadi S, Karimipour A, Goodarzi M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: a new approach of GMDH type of neural network. Int J Heat Mass Transf. 2019;131:432–41.

    CAS  Article  Google Scholar 

  13. 13.

    Shahsavar A, Baseri MH, Al-Rashed AAAA, Afrand M. Numerical investigation of forced convection heat transfer and flow irreversibility in a novel heatsink with helical microchannels working with biologically synthesized water-silver nano-fluid. Int Commun Heat Mass Transf. 2019;108:104324.

    CAS  Article  Google Scholar 

  14. 14.

    Alsarraf J, Rahmani R, Shahsavar A, Afrand M, Wongwises S. Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube. J Therm Anal Calorim. 2019;137:1809–25.

    CAS  Article  Google Scholar 

  15. 15.

    Liu WI, Al-Rashed AAAA, Alsagri AS, Mahmoudi B, Shahsavar A, Afrand M. Laminar forced convection performance of non-Newtonian water-CNT/Fe3O4 nano-fluid inside a minichannel hairpin heat exchanger: effect of inlet temperature. Powder Technol. 2019;354:247–58.

    CAS  Article  Google Scholar 

  16. 16.

    Bovand M, Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2016;31:218–29.

    Article  Google Scholar 

  17. 17.

    Parizad Laein R, Rashidi S, Esfahani JA. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27:312–22.

    CAS  Article  Google Scholar 

  18. 18.

    Shirejini SZ, Rashidi S, Esfahani JA. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.

    CAS  Article  Google Scholar 

  19. 19.

    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.

    CAS  Article  Google Scholar 

  20. 20.

    Pordanjani AH, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers Manag. 2019;198:111886.

    Article  Google Scholar 

  21. 21.

    Feizabadi A, Khoshvaght-Aliabadi M, Rahimi AB. Numerical investigation on Al2O3/water nanofluid flow through twisted-serpentine tube with empirical validation. Appl Therm Eng. 2018;137:296–309.

    CAS  Article  Google Scholar 

  22. 22.

    Omidi M, Rabienataj Darzi AA, Farhadi M. Turbulent heat transfer and fluid flow of alumina. J Therm Anal Calorim. 2019;137:1451–62.

    CAS  Article  Google Scholar 

  23. 23.

    Alveroglu E, Sozeri H, Baykal A, Kurtan U, Senel M. Fluorescence and magnetic properties of hydrogels containing Fe3O4 nanoparticles. J Mol Struct. 2013;1037:361–6.

    CAS  Article  Google Scholar 

  24. 24.

    Shah RK, London AL. Laminar flow forced convection in ducts, supplement 1 to advances in heat transfer. New York: Academic Press; 1978.

    Google Scholar 

  25. 25.

    Shah RK, Bhatti MS. Laminar convective heat transfer in ducts, Chap. 3. In: Kakac S, Shah RK, Aung W, editors. Handbook of single-phase convective heat transfer. New York: Wiley; 1987.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Masoud Afrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niknejadi, M., Afrand, M., Karimipour, A. et al. Experimental investigation of the hydrothermal aspects of water–Fe3O4 nanofluid inside a twisted tube. J Therm Anal Calorim 143, 801–810 (2021). https://doi.org/10.1007/s10973-020-09271-0

Download citation


  • Convective heat transfer
  • Friction factor
  • Nusselt number
  • Pressure drop
  • Twisted tube
  • Water–Fe3O4 nanofluid