Skip to main content
Log in

Improving the efficiency of an exhaust thermoelectric generator based on changes in the baffle distribution of the heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A significant amount of the heat is lost in the vehicle exhaust and simply transferred to the environment. Using a thermoelectric generator (TEG), it is becoming possible to convert this heat potential into the electrical energy. In this study, nine types of the heat exchangers in three different groups, namely A, B, and C are modeled in three dimensions and studied using computational fluid dynamics (CFD) analysis with various baffle arrangements to obtain electrical energy from the vehicle exhaust. The modeling of the group A is focused on the effect of the angle and thickness of the baffles at the inlet of the heat exchanger. In the group B, the distances between the baffles and their heights are changed, and group C is focused to model larger baffles with different arrangements. The results show that, the pressure drop is in the permissible range in all the models, and the gas flow velocity in group A is almost similar to what studied in other models; however, the power produced in it is at least 7.25% higher than other models. The best model for the highest generated power is also recommended and discussed. It is also shown that implementation of a deflector will lead to a non-uniform and unidirectional distribution of temperature. The results also reveal that under identical conditions in the middle section of the heat exchanger, reducing the height of the baffles from 8.46 mm to 2.30 mm will result 10.88% decrease in the output power. Furthermore, increasing the distance between the baffles from 5.2 mm to 16.8 mm will cause 3.91% increase in the output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarafraz MM, Safaei MR, Tian Z, Goodarzi M, Bandarra Filho EP, Arjomandi M. Thermal assessment of nano-particulate graphene-water/ethylene glycol (WEG 60: 40) nano-suspension in a compact heat exchanger. Energies. 2019;12(10):1929.

    Article  CAS  Google Scholar 

  2. Sarafraz MM, Safaei MR, Goodarzi M, Yang B, Arjomandi M. Heat transfer analysis of Ga-In-Sn in a compact heat exchanger equipped with straight micro-passages. Int J Heat Mass Transf. 2019;1(139):675–84.

    Article  CAS  Google Scholar 

  3. Hosseini SM, Safaei MR, Estellé P, Jafarnia SH. Heat transfer of water-based carbon nanotube nanofluids in the shell and tube cooling heat exchangers of the gasoline product of the residue fluid catalytic cracking unit. J Therm Anal Calorim. 2019;21:1–2.

    Google Scholar 

  4. Sadeghinezhad E, Kazi SN, Sadeghinejad F, Badarudin A, Mehrali M, Sadri R, Safaei MR. A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement. Renew Sustain Energy Rev. 2014;1(30):29–44.

    Article  CAS  Google Scholar 

  5. Wu C. Analysis of waste-heat thermoelectric power generators. Appl Therm Eng. 1996;16(1):63–9.

    Article  Google Scholar 

  6. Hatzikraniotis E, Zorbas KT, Samaras I, Kyratsi TH, Paraskevopoulos KM. Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling. J Electron Mater. 2010;39(9):2112–6.

    Article  CAS  Google Scholar 

  7. LeBlanc S. Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain Mater Technol. 2014;1(1):26–35.

    Google Scholar 

  8. Chen L, Gong J, Sun F, Wu C. Effect of heat transfer on the performance of thermoelectric generators. Int J Therm Sci. 2002;41(1):95–9.

    Article  Google Scholar 

  9. Thacher EF, Helenbrook BT, Karri MA, Richter CJ. Testing of an automobile exhaust thermoelectric generator in a light truck. Proc Inst Mech Eng Part D J Autom Eng. 2007;221(1):95–107.

    Article  Google Scholar 

  10. Kumar RC, Sonthalia A, Goel R. Experimental study on waste heat recovery from an IC engine using thermoelectric technology. Therm Sci. 2011;15(4):1011–22.

    Article  Google Scholar 

  11. Bai S, Lu H, Wu T, Yin X, Shi X, Chen L. Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators. Case Stud Therm Eng. 2014;1(4):99–112.

    Article  Google Scholar 

  12. Saidur R, Rezaei M, Muzammil WK, Hassan MH, Paria S, Hasanuzzaman M. Technologies to recover exhaust heat from internal combustion engines. Renew Sustain Energy Rev. 2012;16(8):5649–59.

    Article  CAS  Google Scholar 

  13. Love ND, Szybist JP, Sluder CS. Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery. Appl Energy. 2012;89(1):322–8.

    Article  CAS  Google Scholar 

  14. Lu C, Wang S, Chen C, Li Y. Effects of heat enhancement for exhaust heat exchanger on the performance of thermoelectric generator. Appl Therm Eng. 2015;5(89):270–9.

    Article  Google Scholar 

  15. Esarte J, Min G, Rowe DM. Modelling heat exchangers for thermoelectric generators. J Power Sources. 2001;93(1–2):72–6.

    Article  CAS  Google Scholar 

  16. Niu Z, Diao H, Yu S, Jiao K, Du Q, Shu G. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine. Energy Convers Manag. 2014;1(85):85–101.

    Article  Google Scholar 

  17. Liu X, Yu CG, Chen S, Wang YP, Su CQ. Experiments and simulations on a heat exchanger of an automotive exhaust thermoelectric generation system under coupling conditions. J Electron Mater. 2014;43(6):2218–23.

    Article  CAS  Google Scholar 

  18. Deng YD, Liu X, Chen S, Tong NQ. Thermal optimization of the heat exchanger in an automotive exhaust-based thermoelectric generator. J Electron Mater. 2013;42(7):1634–40.

    Article  CAS  Google Scholar 

  19. Su CQ, Wang WS, Liu X, Deng YD. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators. Case Stud Therm Eng. 2014;1(4):85–91.

    Article  Google Scholar 

  20. Su CQ, Zhu DC, Deng YD, Wang YP, Liu X. Effect of cooling units on the performance of an automotive exhaust-based thermoelectric generator. J Electron Mater. 2017;46(5):2822–31.

    Article  CAS  Google Scholar 

  21. Liu X, Deng YD, Zhang K, Xu M, Xu Y, Su CQ. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application. Appl Therm Eng. 2014;71(1):364–70.

    Article  Google Scholar 

  22. Liu X, Deng YD, Chen S, Wang WS, Xu Y, Su CQ. A case study on compatibility of automotive exhaust thermoelectric generation system, catalytic converter and muffler. Case Stud Therm Eng. 2014;1(2):62–6.

    Article  Google Scholar 

  23. Wang Y, Wu C, Tang Z, Yang X, Deng Y, Su C. Optimization of fin distribution to improve the temperature uniformity of a heat exchanger in a thermoelectric generator. J Electron Mater. 2015;44(6):1724–32.

    Article  CAS  Google Scholar 

  24. Su CQ, Huang C, Deng YD, Wang YP, Chu PQ, Zheng SJ. Simulation and optimization of the heat exchanger for automotive exhaust-based thermoelectric generators. J Electron Mater. 2016;45(3):1464–72.

    Article  CAS  Google Scholar 

  25. Hatami M, Ganji DD, Gorji-Bandpy M. CFD simulation and optimization of ICEs exhaust heat recovery using different coolants and fin dimensions in heat exchanger. Neural Comput Appl. 2014;25(7–8):2079–90.

    Article  Google Scholar 

  26. Fernández-Yañez P, Armas O, Capetillo A, Martínez-Martínez S. Thermal analysis of a thermoelectric generator for light-duty diesel engines. Appl Energy. 2018;15(226):690–702.

    Article  Google Scholar 

  27. Golparvar B, Niazmand H, Sharafian A, Hosseini AA. Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system. Appl Energy. 2018;15(232):504–16.

    Article  Google Scholar 

  28. Shu G, Ma X, Tian H, Yang H, Chen T, Li X. Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery. Energy. 2018;1(160):612–24.

    Article  Google Scholar 

  29. Su CQ, Ye BQ, Guo X, Hui P. Acoustic optimization of automotive exhaust heat thermoelectric generator. J Electron Mater. 2012;41(6):1686–92.

    Article  CAS  Google Scholar 

  30. Wang Y, Li S, Yang X, Deng Y, Su C. Numerical and experimental investigation for heat transfer enhancement by dimpled surface heat exchanger in thermoelectric generator. J Electron Mater. 2016;45(3):1792–802.

    Article  CAS  Google Scholar 

  31. Li S, Wang Y, Wang T, Yang X, Deng Y, Su C. Optimization of heat exchangers with dimpled surfaces to improve the performance in thermoelectric generators using a Kriging model. J Electron Mater. 2017;46(5):3062–70.

    Article  CAS  Google Scholar 

  32. Wang Y, Li S, Zhang Y, Yang X, Deng Y, Su C. The influence of inner topology of exhaust heat exchanger and thermoelectric module distribution on the performance of automotive thermoelectric generator. Energy Convers Manag. 2016;15(126):266–77.

    Article  Google Scholar 

  33. Zhu DC, Su CQ, Deng YD, Wang YP, Liu X. The influence of the inner topology of cooling units on the performance of automotive exhaust-based thermoelectric generators. J Electron Mater. 2018;47(6):3320–9.

    Article  CAS  Google Scholar 

  34. Lu X, Yu X, Qu Z, Wang Q, Ma T. Experimental investigation on thermoelectric generator with non-uniform hot-side heat exchanger for waste heat recovery. Energy Convers Manag. 2017;15(150):403–14.

    Article  Google Scholar 

  35. Wang Y, Li S, Xie X, Deng Y, Liu X, Su C. Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger. Appl Energy. 2018;15(218):391–401.

    Article  Google Scholar 

  36. Feng GA, Xiao-Jun YA, Zhang YF. Exact traveling wave solutions for a new non-linear heat transfer equation. Therm Sci. 2017;1(21):1833–8.

    Google Scholar 

  37. Yang XJ, Yang X, Zhu M. A new technique for solving the 1-D Burgers equation. Therm Sci. 2017;1(21):129–36.

    Article  Google Scholar 

  38. Gholampour S, Jalali A. Thermal analysis of the dentine tubule under hot and cold stimuli using fluid–structure interaction simulation. Biomech Model Mechanobiol. 2018;17(6):1599–610.

    Article  PubMed  Google Scholar 

  39. Gholampour S, Hajirayat K. Minimizing thermal damage to vascular nerves while drilling of calcified plaque. BMC Res Notes. 2019;12(1):338.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Taher M, Gholampour S. Effect of ambient temperature changes on blood flow in anterior cerebral artery of patients with skull prosthesis. World Neurosurg. 2020 (In press).

  41. Gholampour S. FSI simulation of CSF hydrodynamic changes in a large population of non-communicating hydrocephalus patients during treatment process with regard to their clinical symptoms. PLoS ONE. 2018;13(4):e0196216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gholampour S, Taher M. Relationship of morphologic changes in the brain and spinal cord and disease symptoms with cerebrospinal fluid hydrodynamic changes in patients with Chiari malformation type I. World Neurosurg. 2018;1(116):e830–9.

    Article  Google Scholar 

  43. Gholampour S, Gholampour H, Khanmohammadi H. Finite element analysis of occlusal splint therapy in patients with bruxism. BMC Oral Health. 2019;19(1):205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Braess HH, Seiffer U. Handbook of automotive engineering (English version). Warrendale: SAE International; 2005.

    Google Scholar 

  45. Min G, Rowe DM. Recent concepts in thermoelectric power generation. In: Twenty-first international conference on thermoelectrics. Proceedings ICT’02. IEEE; 2002. pp 365–74.

  46. Liu X, Li C, Deng YD, Su CQ. An energy-harvesting system using thermoelectric power generation for automotive application. Int J Electr Power Energy Syst. 2015;1(67):510–6.

    Article  Google Scholar 

  47. Gholampour S, Deh HH. The effect of spatial distances between holes and time delays between bone drillings based on examination of heat accumulation and risk of bone thermal necrosis. Biomed Eng Online. 2019;18(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gholampour S, Shakouri E, Deh HH. Effect of drilling direction and depth on thermal necrosis during tibia drilling: an in vitro study. Technol Health Care. 2018;26:687–97.

    Article  PubMed  Google Scholar 

  49. Mahdisoozani H, Mohsenizadeh M, Bahiraei M, Kasaeian A, Daneshvar A, Goodarzi M, Safaei MR. Performance enhancement of internal combustion engines through vibration control: state of the art and challenges. Appl Sci. 2019;9(3):406.

    Article  CAS  Google Scholar 

  50. De Brito MA, Galotto L, Sampaio LP, e Melo GD, Canesin CA. Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans Ind Electr. 2013;60(3):1156–67.

    Article  Google Scholar 

  51. Carstens JH, Gühmann C. Maximum power point controller for thermoelectric generators to support a vehicle power supply. Mater Today Proc. 2015;2(2):790–803.

    Article  Google Scholar 

  52. Yang XJ, Gao F. A new technology for solving diffusion and heat equations. Therm Sci. 2017;21(1A):133–40.

    Article  Google Scholar 

  53. Bahiraei M, Salmi HK, Safaei MR. Effect of employing a new biological nanofluid containing functionalized graphene nanoplatelets on thermal and hydraulic characteristics of a spiral heat exchanger. Energy Convers Manag. 2019;15(180):72–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SG contributed to design of study; SG, RS, and MB were involved in the conceptualization; SG, RS, HF and MB contributed to methodology; SG, RS, MG, and MMT were involved in the formal analysis and investigation; RS was involved in writing—original draft preparation; RS, and MMT contributed to writing—review and editing; SG was involved in supervision. All authors approved the final manuscript.

Corresponding author

Correspondence to Seifollah Gholampour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, R., Gholampour, S., Fallahsohi, H. et al. Improving the efficiency of an exhaust thermoelectric generator based on changes in the baffle distribution of the heat exchanger. J Therm Anal Calorim 143, 523–533 (2021). https://doi.org/10.1007/s10973-019-09253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09253-x

Keywords

Navigation