Release behaviors of sulfur-containing pollutants during combustion and gasification of coals by TG-MS

Abstract

Sulfur-containing pollutants are released during coal thermal conversion processes and must be controlled to satisfy the requirements of industrial production and protect the environments. This study investigated the release behaviors of sulfur species in Zhundong (ZD) coal during combustion and gasification. H2O-washed ZD coal and Shenmu (SM) coal were also investigated as reference samples to compare with ZD coal and to obtain general release properties. The experiments were carried out using online thermogravimetric analysis coupled with mass spectrometry. Theoretical calculation of the released gas was obtained by a novel method and equivalent characteristic spectrum analysis. The mass flow rate, the release proportion and the release temperature range of individual sulfur-containing pollutant were evaluated. The results show that water washing process did not change the combustion reactivity and the sulfur release temperature ranges of ZD coal, but the maximum gasification rate and the SO2 release rate were decreased. H2S, COS and SO2 were observed in gasification of the coals, while COS and SO2 were observed in combustion. SO2 was always the main sulfur-containing gaseous product in both combustion and gasification. Some sulfur starts to release as SO2 at high temperature (at about 1000 °C for ZD coal and H2O-washed ZD coal, and at about 1100 °C for SM coal) due to the decomposition of sulfate, at which temperature carbon had already burned out in combustion, and the coal conversion in gasification reached about 90%. With combustion temperature lower than 1000 °C, the release of SO2 from ZD coal, H2O-washed ZD coal and SM coal can be decreased by 46.14%, 38.95% and 4.36%, respectively. With gasification temperature lower than 1000 °C, few SO2 from ZD coal and H2O-washed ZD coal and SM coal can be released. It was observed that the releases of sulfur species were related to their occurrence, reaction evolution, temperature and atmosphere. Controlling the temperature is helpful in reducing the release of SO2 in both combustion and gasification. This work also shows that it is possible to achieve high carbon conversion of ZD coal gasification at a moderate temperature and simultaneously reduce the release of sulfur.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Hook M, Tang X. Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy. 2013;52:797–809. https://doi.org/10.1016/j.enpol.2012.10.046.

    CAS  Article  Google Scholar 

  2. 2.

    Frigge L, Stroehle J, Epple B. Release of sulfur and chlorine gas species during coal combustion and pyrolysis in an entrained flow reactor. Fuel. 2017;201:105–10. https://doi.org/10.1016/j.fuel.2016.11.037.

    CAS  Article  Google Scholar 

  3. 3.

    Wang Z, Li Q, Lin Z, Whiddon R, Qiu K, Kuang M, et al. Transformation of nitrogen and sulphur impurities during hydrothermal upgrading of low quality coals. Fuel. 2016;164:254–61. https://doi.org/10.1016/j.fuel.2015.10.015.

    CAS  Article  Google Scholar 

  4. 4.

    Blaesing M, Melchior T, Mueller M. Influence of temperature on the release of inorganic species during high temperature gasification of Rhenish lignite. Fuel Process Technol. 2011;92(3):511–6. https://doi.org/10.1016/j.fuproc.2010.11.005.

    CAS  Article  Google Scholar 

  5. 5.

    Krishnamoorthy V, Pisupati SV. Fate of sulfur during entrained-flow gasification of Pittsburgh no. 8 coal: influence of particle size, sulfur forms, and temperature. Energy Fuels. 2016;30(4):3241–50. https://doi.org/10.1021/acs.energyfuels.5b02691.

    CAS  Article  Google Scholar 

  6. 6.

    Zhang HX, Zhang YK, Zhu ZP, Lu QG. Circulating fluidized bed gasification of low rank coal: influence of O2/C molar ratio on gasification performance and sulphur transformation. J Therm Sci. 2016;25(4):363–71. https://doi.org/10.1007/s11630-016-0872-9.

    CAS  Article  Google Scholar 

  7. 7.

    Li Y, Lin Y, Xu Z, Wang B, Zhu T. Oxidation mechanisms of H2S by oxygen and oxygen-containing functional groups on activated carbon. Fuel Process Technol. 2019;189:110–9. https://doi.org/10.1016/j.fuproc.2019.03.006.

    CAS  Article  Google Scholar 

  8. 8.

    Chu X, Li W, Li B, Chen H. Sulfur transfers from pyrolysis and gasification of direct liquefaction residue of Shenhua coal. Fuel. 2008;87(2):211–5.

    CAS  Article  Google Scholar 

  9. 9.

    Duan Y, Duan L, Wang J, Anthony EJ. Observation of simultaneously low CO, NOx and SO2 emission during oxy-coal combustion in a pressurized fluidized bed. Fuel. 2019;242:374–81. https://doi.org/10.1016/j.fuel.2019.01.048.

    CAS  Article  Google Scholar 

  10. 10.

    Chen L, Wang C, Yan G, Zhao F, Anthony EJ. The simultaneous calcination/sulfation reaction of limestone under oxy-fuel CFB conditions. Fuel. 2019;237:812–22. https://doi.org/10.1016/j.fuel.2018.10.060.

    CAS  Article  Google Scholar 

  11. 11.

    Fang P, Gong Z, Wang Z, Wang Z, Meng F. Study on combustion and emission characteristics of microalgae and its extraction residue with TG-MS. Renew Energy. 2019;140:884–94. https://doi.org/10.1016/j.renene.2019.03.114.

    CAS  Article  Google Scholar 

  12. 12.

    Rodilla I, Contreras ML, Bahillo A. Thermogravimetric and mass spectrometric (TG-MS) analysis of sub-bituminous coal-energy crops blends in N2, air and CO2/O2 atmospheres. Fuel. 2018;215:506–14. https://doi.org/10.1016/j.fuel.2017.09.102.

    CAS  Article  Google Scholar 

  13. 13.

    Guo H, Wu H, Yang N, Fu Q, Liu F, Zhang H, et al. XAS combined with TG–DTG study on synergic effect on sulfur transformation during co-pyrolysis of sawdust and lignite. J Therm Anal Calorim. 2019;135(4):2475–80. https://doi.org/10.1007/s10973-018-7259-y.

    CAS  Article  Google Scholar 

  14. 14.

    Zhao B, Jin J, Li S, Liu D, Zhang R, Yang H. Co-pyrolysis characteristics of sludge mixed with Zhundong coal and sulphur contaminant release regularity. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08300-x.

    Article  Google Scholar 

  15. 15.

    Cheng H, Liu Q, Zhang S, Wang S, Frost RL. Evolved gas analysis of coal-derived pyrite/marcasite. J Therm Anal Calorim. 2014;116(2):887–94. https://doi.org/10.1007/s10973-013-3595-0.

    CAS  Article  Google Scholar 

  16. 16.

    Zhou J, Zhuang X, Alastuey A, Querol X, Li J. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China. Int J Coal Geol. 2010;82(1–2):51–67. https://doi.org/10.1016/j.coal.2009.12.015.

    CAS  Article  Google Scholar 

  17. 17.

    Wang X, Xu Z, Wei B, Zhang L, Tan H, Yang T, et al. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: a study from ash evaporating to condensing. Appl Therm Eng. 2015;80:150–9. https://doi.org/10.1016/j.applthermaleng.2015.01.051.

    CAS  Article  Google Scholar 

  18. 18.

    Qi X, Song G, Song W, Yang S, Lu Q. Combustion performance and slagging characteristics during co-combustion of Zhundong coal and sludge. J Energy Inst. 2018;91(3):397–410. https://doi.org/10.1016/j.joei.2017.02.002.

    CAS  Article  Google Scholar 

  19. 19.

    Zhang H, Guo X, Zhu Z. Effect of temperature on gasification performance and sodium transformation of Zhundong coal. Fuel. 2017;189:301–11. https://doi.org/10.1016/j.fuel.2016.10.097.

    CAS  Article  Google Scholar 

  20. 20.

    Guo X, Zhang H, Zhu Z. The effect of O2/C ratio on gasification performance and sodium transformation of Zhundong coal. Fuel Process Technol. 2019;193:31–8. https://doi.org/10.1016/j.fuproc.2019.04.015.

    CAS  Article  Google Scholar 

  21. 21.

    Gao Q, Li S, Yuan Y, Zhang Y, Yao Q. Ultrafine particulate matter formation in the early stage of pulverized coal combustion of high-sodium lignite. Fuel. 2015;158:224–31. https://doi.org/10.1016/j.fuel.2015.05.028.

    CAS  Article  Google Scholar 

  22. 22.

    Liu Y, Cheng L, Zhao Y, Ji J, Wang Q, Luo Z, et al. Transformation behavior of alkali metals in high-alkali coals. Fuel Process Technol. 2018;169:288–94. https://doi.org/10.1016/j.fuproc.2017.09.013.

    CAS  Article  Google Scholar 

  23. 23.

    Ruan R, Tan H, Wang X, Li Y, Hu Z, Wei B, et al. Characteristics of fine particulate matter formation during combustion of lignite riched in AAEM (alkali and alkaline earth metals) and sulfur. Fuel. 2018;211:206–13. https://doi.org/10.1016/j.fuel.2017.08.114.

    CAS  Article  Google Scholar 

  24. 24.

    Lyu Q, Yu K, Liu W, Sun Y, Zhang H, Sun Y et al. Development and operation of large scale circulating fluidized bed coal gasification. In: Proceedings of the 12th international conference on fluidized bed technology. 2017 825–30.

  25. 25.

    Huang Q, Wei K, Xia H. A novel perspective of dolomite decomposition: elementary reactions analysis by thermogravimetric mass spectrometry. Thermochim Acta. 2019;676:47–51. https://doi.org/10.1016/j.tca.2019.03.042.

    CAS  Article  Google Scholar 

  26. 26.

    Li R, Chen Q, Xia H. Study on pyrolysis characteristics of pretreated highsodium (Na) Zhundong coal by skimmer-type interfaced TG-DTA-EI/PI-MS system. Fuel Process Technol. 2018;170:79–87. https://doi.org/10.1016/j.fuproc.2017.10.023.

    CAS  Article  Google Scholar 

  27. 27.

    Xia H, Wei K. Equivalent characteristic spectrum analysis in TG-MS system. Thermochim Acta. 2015;602:15–21. https://doi.org/10.1016/j.tca.2014.12.019.

    CAS  Article  Google Scholar 

  28. 28.

    Duan Y, Duan L, Anthony EJ, Zhao C. Nitrogen and sulfur conversion during pressurized pyrolysis under CO2 atmosphere in fluidized bed. Fuel. 2017;189:98–106. https://doi.org/10.1016/j.fuel.2016.10.080.

    CAS  Article  Google Scholar 

  29. 29.

    Song G, Song W, Qi X, Lu Q. Transformation characteristics of sodium of Zhundong coal combustion/gasification in circulating fluidized bed. Energy Fuels. 2016;30(4):3473–8. https://doi.org/10.1021/acs.energyfuels.6b00028.

    CAS  Article  Google Scholar 

  30. 30.

    Yan J, Yang J, Liu Z. SH radical: the key intermediate in sulfur transformation during thermal processing of coal. Environ Sci Technol. 2005;39(13):5043–51. https://doi.org/10.1021/es048398c.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Zhang Y, Wang M, Qin Z, Yang Y, Fu C, Feng L, et al. Effect of the interactions between volatiles and char on sulfur transformation during brown coal upgrade by pyrolysis. Fuel. 2013;103:915–22. https://doi.org/10.1016/j.fuel.2012.09.061.

    CAS  Article  Google Scholar 

  32. 32.

    Wang X, Guo H, Liu F, Hua R, Wang M. Effects of CO2 on sulfur removal and its release behavior during coal pyrolysis. Fuel. 2016;165:484–9. https://doi.org/10.1016/j.fuel.2015.10.047.

    CAS  Article  Google Scholar 

  33. 33.

    Jia X, Wang QH, Cen KF, Chen LM. An experimental study of CaSO4 decomposition during coal pyrolysis. Fuel. 2016;163:157–65. https://doi.org/10.1016/j.fuel.2015.09.054.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB0602302) and the Beijing Municipal Science and Technology Commission (No. Z181100005118006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haixia Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xian, S., Zhu, Z. et al. Release behaviors of sulfur-containing pollutants during combustion and gasification of coals by TG-MS. J Therm Anal Calorim 143, 377–386 (2021). https://doi.org/10.1007/s10973-019-09251-z

Download citation

Keywords

  • Sulfur
  • Release behavior
  • TG-MS
  • ECSA