Skip to main content
Log in

Preparation of hybrid composites of PLLA using GO/PEG masterbatch and their characterization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanocomposites of poly(ethylene glycol) (PEG) reinforced with graphene oxide (GO), prepared by drying their ultrasonically homogenized aqueous solution, were incorporated in poly(l-lactic acid) (PLLA) via melt extrusion. Raman spectroscopy revealed that the employed method increased GO’s structural defects due to exfoliation and allowed PEG to penetrate its layers. Hydrogen bonding interactions were identified in the hybrids by Fourier transform infrared spectroscopy (FTIR), whereas differential scanning calorimetry (DSC) tests showed that GO promoted PEG’s crystallization by increasing its crystallization temperature (Tc) and degree of crystallinity (Xc). The combination of nucleant and plasticizer in the hybrids increased PLLA’s Tc and melting temperature and a new band, associated with crystalline domains, appeared in their FTIR spectra. The Avrami kinetic model was implemented on DSC data to understand the isothermal crystallization behavior of PEG/PLLA blend, as well as of the system GO/PEG/PLLA. It was highlighted that GO is an effective nucleating agent for plasticized PLLA since, under the examined conditions, it enhances its crystallization rate and transforms the disk-like to sphere-like crystal formation and the two-dimensional to three-dimensional crystal growth. Furthermore, GO increased the crystallization activation energy values of plasticized PLLA due to segment transportation obstruction and transformed the double-melting peak into single after isothermal crystallization. Thermogravimetric analysis showed that GO did not enhance the heat resistivity of plasticized PLLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Giita Silverajah VS, Ibrahim NA, Zainuddin N, Wan Yunus WMZ, Hassan HA. Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend. Molecule. 2012;17:11729–47.

    Article  Google Scholar 

  2. Pinto AM, Gonçalves C, Gonçalves IC, Magalhães FD. Effect of biodegradation on thermo-mechanical properties and biocompatibility of poly(lactic acid)/graphene nanoplatelets composites. Eur Polym J. 2016;85:431–44.

    Article  CAS  Google Scholar 

  3. Wojtczak E, Gadzinowski M, Makowski T, Maresz K, Kubisa P, Bednarek M, Pluta M. Encapsulation of hydrophobic vitamins by polylactide stereocomplexation and their release study. Polym Int. 2018. https://doi.org/10.1002/pi.5674.

    Article  Google Scholar 

  4. Jandas PJ, Mohanty S, Nayak SK. Thermal properties and cold crystallization kinetics of surface-treated banana fiber (BF)-reinforced poly(lactic acid) (PLA) nanocomposites. J Therm Anal Calorim. 2013;114:1265–78.

    Article  CAS  Google Scholar 

  5. Mallapragada SK, Narasimhan B. Infrared spectroscopy in analysis of polymer crystallinity. Encycl Anal Chem. 2006;2006:1–14. https://doi.org/10.1002/9780470027318.a2012.

    Article  Google Scholar 

  6. Jia S, Yu D, Zhu Y, Wang Z, Chen L, Fu L. Morphology, crystallization and thermal behaviors of PLA-based composites: wonderful effects of hybrid GO/PEG via dynamic impregnating. Polymers (Basel). 2017;9:528.

    Article  Google Scholar 

  7. Rasselet D, Ruellan A, Guinault A, Miquelard-Garnier G, Sollogoub C, Fayolle B. Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties. Eur Polym J. 2014;50:109–16.

    Article  CAS  Google Scholar 

  8. Aliotta L, Cinelli P, Coltelli MB, Righetti MC, Gazzano M, Lazzeri A. Effect of nucleating agents on crystallinity and properties of poly(lactic acid) (PLA). Eur Polym J. 2017;93:822–32.

    Article  CAS  Google Scholar 

  9. Di Lorenzo ML. Crystallization behavior of poly(l-lactic acid). Eur Polym J. 2005;41:569–75.

    Article  Google Scholar 

  10. Li Y, Li X, Xiang F, Huang T, Wang Y, Wu J, Zhou Z. Crystallization, rheological, and mechanical properties of PLLA/PEG blend with multiwalled carbon nanotubes. Polym Adv Technol. 2011;22:1959–70.

    Article  CAS  Google Scholar 

  11. Lai WC, Liau WB, Lin TT. The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA. Polymer (Guildf). 2004;45:3073–80.

    Article  CAS  Google Scholar 

  12. He X, Qiu Z. Effect of poly(ethylene adipate) with different molecular weights on the crystallization behavior and mechanical properties of biodegradable poly(l-lactide). Thermochim Acta. 2018;659:89–95.

    Article  CAS  Google Scholar 

  13. Barkoula NM, Alcock B, Cabrera NO, Peijs T. Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polym Polym Compos. 2008;16:101–13.

    CAS  Google Scholar 

  14. Liu C, Ye S, Feng J. Promoting the dispersion of graphene and crystallization of poly(lactic acid) with a freezing-dried graphene/PEG masterbatch. Compos Sci Technol. 2017;144:215–22.

    Article  CAS  Google Scholar 

  15. Justh N, Berke B, László K, Miklós Szilágyi I. Thermal analysis of the improved Hummers’ synthesis of graphene oxide. J Therm Anal Calorim. 2017;131:2267–72.

    Article  Google Scholar 

  16. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339.

    Article  CAS  Google Scholar 

  17. Trapalis A, Todorova N, Giannakopoulou T, Boukos N, Speliotis T, Dimotikali YuJ. TiO2/graphene composite photocatalysts for NOx removal: a comparison of surfactant-stabilized graphene and reduced graphene oxide. Appl Catal B Environ. 2016;180:637–47.

    Article  CAS  Google Scholar 

  18. Huskić M, Bolka S, Vesel A, Mozetič M, Anžlovar A, Vizintin A, Žagar E. One-step surface modification of graphene oxide and influence of its particle size on the properties of graphene oxide/epoxy resin nanocomposites. Eur Polym J. 2018;101:211–7.

    Article  Google Scholar 

  19. Li C, Xiang M, Ye L. Intercalation behavior and orientation structure of graphene oxide/polyethylene glycol hybrid material. RSC Adv. 2016;6:72193–200.

    Article  CAS  Google Scholar 

  20. Bao C, Song L, Xing W, Yuan B, Wilkie CA, Huang J, Guo Y, Hu Y. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem. 2012;22:6088–96.

    Article  CAS  Google Scholar 

  21. Pielichowski K, Flejtuch K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym Adv Technol. 2002;13:690–6.

    Article  CAS  Google Scholar 

  22. Li Y, Ma Q, Huang C, Liu G. Crystallization of poly(ethylene glycol) in poly(methyl methacrylate). Networks. 2013;19:147–51.

    CAS  Google Scholar 

  23. Li L, Cao ZQ, Bao RY, Xie BH, Yang MB, Yang W. Poly(l-lactic acid)-polyethylene glycol-poly(l-lactic acid) triblock copolymer: a novel macromolecular plasticizer to enhance the crystallization of poly(l-lactic acid). Eur Polym J. 2017;97:272–81.

    Article  CAS  Google Scholar 

  24. Hussein SM, Crowe IF, Clark N, Milosevic M, Vijayaraghavan A, Gardes FY, Mashanovich GZ, Halsall MP. Raman mapping analysis of graphene-integrated silicon micro-ring resonators. Nanoscale Res Lett. 2017;12:600.

    Article  Google Scholar 

  25. Gong M, Zhao Q, Dai L, Li Y, Jiang T. Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties. J Asian Ceram Soc. 2017;5:160–8.

    Article  Google Scholar 

  26. Akhavan O, Ghaderi E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small. 2013;9:3593–601.

    Article  CAS  Google Scholar 

  27. Jiao T, Liu Y, Wu Y, Zhang Q, Yan X, Gao F, Bauer AJP, Liu J, Zeng T, Li B. Facile and scalable preparation of graphene oxide-based magnetic hybrids for fast and highly efficient removal of organic dyes. Sci Rep. 2015;5:1–10.

    Google Scholar 

  28. Tan H, Wang H, Tang Y, Zhang S, Yang W, Liu Z, Yang M. The preparation of functionalized cellulose nanoparticles and their effect on the crystallization behaviors of poly(l-lactide) based nanocomposites. Polym Int. 2018. https://doi.org/10.1002/pi.5675.

    Article  Google Scholar 

  29. Zhang H, Shao C, Kong W, Wang Y, Cao W, Liu C, Shen C. Memory effect on the crystallization behavior of poly(lactic acid) probed by infrared spectroscopy. Eur Polym J. 2017;91:376–85.

    Article  CAS  Google Scholar 

  30. Chen HM, Bin Zhang W, Du XC, Yang JH, Zhang N, Huang T, Wang Y. Crystallization kinetics and melting behaviors of poly(l-lactide)/graphene oxides composites. Thermochim Acta. 2013;566:57–70.

    Article  CAS  Google Scholar 

  31. Li S, Sun X, Li H, Yan S. The crystallization behavior of biodegradable polymer in thin film. Eur Polym J. 2018;102:238–53.

    Article  CAS  Google Scholar 

  32. Wu D, Cheng Y, Feng S, Yao Z, Zhang M. Crystallization behavior of polylactide/graphene composites. Ind Eng Chem Res. 2013;52:6731–9.

    Article  CAS  Google Scholar 

  33. He Y, Fan Z, Hu Y, Wu T, Wei J, Li S. DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(l-lactide) with different molecular weights. Eur Polym J. 2007;43:4431–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Research Committee of National Technical Univ. of Athens for the scholarship of Ms. Athanasoulia PhD. Special thanks go to Dr. D. Korres for assistance in DSC and TG experiments, Dr. N. Panagiotou for assistance in X-Ray Diffraction experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petroula Tarantili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athanasoulia, IG., Giachalis, K., Todorova, N. et al. Preparation of hybrid composites of PLLA using GO/PEG masterbatch and their characterization. J Therm Anal Calorim 143, 3385–3399 (2021). https://doi.org/10.1007/s10973-019-09227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09227-z

Keywords

Navigation