Skip to main content
Log in

Numerical study of laminar pulsed impinging jet on the metallic foam blocks using the local thermal non-equilibrium model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, thermal performance of an impingement jet with the presence of porous block is numerically investigated. The study is comprised of two main parts. At first, a parametric study is conducted on the steady impingement jet with porous block. Later, the effect of porous block is assessed on the pulsative impingement jet. The effect of different pulsation frequencies and amplitudes is analyzed on the heat transfer between the jet and porous block. In order to model the thermal performance, the local thermal non-equilibrium model is applied to the system. An entropy generation study was also conducted in order to investigate the system’s performance from second law of thermodynamics point of view. In addition to the mentioned studies, by utilizing the energy density flux vector, different regimes of heat transfer in various cases are demonstrated and some of the trends obtained in parametric study are justified. The results suggest that porous block can change the Nusselt number distribution on the target plate. A more flattened Nusselt number distribution is observed with the presence of porous blocks. While lower frequencies and amplitudes of pulsation do not affect the thermal performance of the jet, higher ones have a moderate effect on the heat transfer rate of the impinging jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(a\) :

Interstitial area between phases

\({\text{Br}}\) :

Brinkman number

\(C\) :

Specific heat capacity

\(C_{\text{F}}\) :

Forchheimer coefficient

\({\text{Da}}\) :

Darcy number

\(d\) :

Inlet width

\(h\) :

Heat transfer coefficient

\(H\) :

Nozzle distance to target plate

\(H_{\text{p}}\) :

Height of porous block

\(H^{*}\) :

Dimensionless height, \(H^{*} = \frac{{H_{\text{p}} }}{H}\)

\(K\) :

Permeability

\(k\) :

Thermal conductivity

\({\text{Nu}}\) :

Nusselt number

\(p\) :

Thermodynamic pressure

\(q^{{\prime \prime }}\) :

Heat flux

\({\text{Re}}\) :

Reynolds number based on nozzle width

\({\text{St}}\) :

Strouhal number

\(T\) :

Temperature

\(u\) :

Velocity

\(\varphi\) :

Porosity

\(\mu\) :

Dynamic viscosity

\(\rho\) :

Density

f:

Fluid

j:

Inlet

s:

Solid

References

  1. Qiu D, Wang C, Luo L, Wang S, Zhao Z, Wang Z. On heat transfer and flow characteristics of jets impinging onto a concave surface with varying jet arrangements. J Therm Anal Calorim 2019. https://doi.org/10.1007/s10973-019-08901-6.

    Article  Google Scholar 

  2. Marazani T, Madyira DM, Akinlabi ET. Investigation of the parameters governing the performance of jet impingement quick food freezing and cooling systems—a review. Procedia Manuf. 2017;8:754–60.

    Article  Google Scholar 

  3. Shukla AK, Dewan A. Flow and thermal characteristics of jet impingement: comprehensive review. Int J Heat Technol. 2017;35:153–66.

    Article  Google Scholar 

  4. Selimefendigil F, Öztop HF. Jet impingement cooling and optimization study for a partly curved isothermal surface with CuO–water nanofluid. Int Commun Heat Mass Transf. 2017;89:211–8.

    Article  CAS  Google Scholar 

  5. Selimefendigil F, Öztop HF. Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the influence of a rotating cylinder. Int J Heat Mass Transf. 2018;121:233–45.

    Article  CAS  Google Scholar 

  6. Selimefendigil F, Öztop HF. Pulsating nanofluids jet impingement cooling of a heated horizontal surface. Int J Heat Mass Transf. 2014;69:54–65.

    Article  CAS  Google Scholar 

  7. Izadi A, Siavashi M, Xiong Q. Impingement jet hydrogen, air and CuH2O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. Int J Hydrog Energy. 2019;44:15933–48.

    Article  CAS  Google Scholar 

  8. Selimefendigil F, Öztop HF. Effects of nanoparticle shape on slot-jet impingement cooling of a corrugated surface with nanofluids. J Therm Sci Eng Appl. 2017;9:021016.

    Article  Google Scholar 

  9. Iio S, Takahashi K, Haneda Y, Ikeda T. Flow visualization of vortex structure in a pulsed rectangular jet. J Vis. 2008;11:125–32.

    Article  Google Scholar 

  10. Azevedo L, Webb B, Queiroz M. Pulsed air jet impingement heat transfer. Exp Therm Fluid Sci. 1994;8:206–13.

    Article  Google Scholar 

  11. Zumbrunnen D, Aziz M. Convective heat transfer enhancement due to intermittency in an impinging jet. J Heat Transf. 1993;115:91–8.

    Article  Google Scholar 

  12. Mladin E, Zumbrunnen D. Local convective heat transfer to submerged pulsating jets. Int J Heat Mass Transf. 1997;40:3305–21.

    Article  CAS  Google Scholar 

  13. Poh HJ, Kumar K, Mujumdar AS. Heat transfer from a pulsed laminar impinging jet. Int Commun Heat Mass Transf. 2005;32:1317–24.

    Article  CAS  Google Scholar 

  14. Xu P, Mujumdar AS, Poh HJ, Yu B. Heat transfer under a pulsed slot turbulent impinging jet at large temperature differences. Therm Sci. 2010;14:271–81.

    Article  Google Scholar 

  15. Xu P, Yu B, Qiu S, Poh HJ, Mujumdar AS. Turbulent impinging jet heat transfer enhancement due to intermittent pulsation. Int J Therm Sci. 2010;49:1247–52.

    Article  Google Scholar 

  16. Esmailpour K, Hosseinalipour M, Bozorgmehr B, Mujumdar AS. A numerical study of heat transfer in a turbulent pulsating impinging jet. Can J Chem Eng. 2015;93:959–69.

    Article  CAS  Google Scholar 

  17. Wilke R, Sesterhenn J. Statistics of fully turbulent impinging jets. J Fluid Mech. 2017;825:795–824.

    Article  Google Scholar 

  18. Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2019;135:1399–415.

    Article  CAS  Google Scholar 

  19. Joibary SMM, Siavashi M. Effect of Reynolds asymmetry and use of porous media in the counterflow double-pipe heat exchanger for passive heat transfer enhancement. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08991-2.

    Article  Google Scholar 

  20. Arasteh H, Mashayekhi R, Ghaneifar M, Toghraie D, Afrand M. Heat transfer enhancement in a counter-flow sinusoidal parallel-plate heat exchanger partially filled with porous media using metal foam in the channels’ divergent sections. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08870-w.

    Article  Google Scholar 

  21. Graminho DR, de Lemos MJ. Laminar confined impinging jet into a porous layer. Numer Heat Transf Part A Appl. 2008;54:151–77.

    Article  Google Scholar 

  22. Jeng T-M, Tzeng S-C. Experimental study of forced convection in metallic porous block subject to a confined slot jet. Int J Therm Sci. 2007;46:1242–50.

    Article  Google Scholar 

  23. Fu W-S, Huang H-C. Thermal performances of different shape porous blocks under an impinging jet. Int J Heat Mass Transf. 1997;40:2261–72.

    Article  CAS  Google Scholar 

  24. Dórea FT, De Lemos MJ. Simulation of laminar impinging jet on a porous medium with a thermal non-equilibrium model. Int J Heat Mass Transf. 2010;53:5089–101.

    Article  Google Scholar 

  25. Feng S, Kuang J, Wen T, Lu T, Ichimiya K. An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling. Int J Heat Mass Transf. 2014;77:1063–74.

    Article  CAS  Google Scholar 

  26. de Lemos MJ, Dórea FT. Simulation of a turbulent impinging jet into a layer of porous material using a two-energy equation model. Numer Heat Transf Part A Appl. 2011;59:769–98.

    Article  Google Scholar 

  27. Manca O, Cirillo L, Nardini S, Buonomo B, Ercole D. Experimental investigation on fluid dynamic and thermal behavior in confined impinging round jets in aluminum foam. Energy Procedia. 2016;101:1095–102.

    Article  Google Scholar 

  28. Saeid NH, Mohamad AA. Jet impingement cooling of a horizontal surface in a confined porous medium: mixed convection regime. Int J Heat Mass Transf. 2006;49:3906–13.

    Article  Google Scholar 

  29. Jeng T-M, Tzeng S-C. Numerical study of confined slot jet impinging on porous metallic foam heat sink. Int J Heat Mass Transf. 2005;48:4685–94.

    Article  CAS  Google Scholar 

  30. Buonomo B, Lauriat G, Manca O, Nardini S. Numerical investigation on laminar slot-jet impinging in a confined porous medium in local thermal non-equilibrium. Int J Heat Mass Transf. 2016;98:484–92.

    Article  Google Scholar 

  31. Kumar CS, Pattamatta A. Assessment of heat transfer enhancement using metallic porous foam configurations in laminar slot jet impingement: an experimental study. J Heat Transf. 2018;140:022202.

    Article  Google Scholar 

  32. Vafai K. Handbook of porous media. Boca Raton: CRC Press; 2015.

    Book  Google Scholar 

  33. Nield DA, Bejan A. Convection in porous media, vol. 3. Berlin: Springer; 2006.

    Google Scholar 

  34. Landau LD, Lifshitz E. Course of theoretical physics., Vol. 6 fluid mechaniesOxford: Pergamon Press; 1959.

    Google Scholar 

  35. Hooman K. Energy flux vectors as a new tool for convection visualization. Int J Numer Methods Heat Fluid Flow. 2010;20:240–9.

    Article  Google Scholar 

  36. Mahmud S, Fraser RA. Flow, thermal, and entropy generation characteristics inside a porous channel with viscous dissipation. Int J Therm Sci. 2005;44:21–32.

    Article  Google Scholar 

  37. Costa V. Bejan’s heatlines and masslines for convection visualization and analysis. Appl Mech Rev. 2006;59:126–45.

    Article  Google Scholar 

  38. Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J Appl Phys. 1996;79:1191–218.

    Article  CAS  Google Scholar 

  39. Esmailpour K, Bozorgmehr B, Hosseinalipour SM, Mujumdar AS. Entropy generation and second law analysis of pulsed impinging jet. Int J Numer Meth Heat Fluid Flow. 2015;25:1089–106.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Energy, Water and Environment Research Laboratory at Iran University of Science and Technology for providing their expertise and encouragement throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Moghimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinalipour, S.M., Rashidzadeh, S., Moghimi, M. et al. Numerical study of laminar pulsed impinging jet on the metallic foam blocks using the local thermal non-equilibrium model. J Therm Anal Calorim 141, 1859–1874 (2020). https://doi.org/10.1007/s10973-019-09225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09225-1

Keywords

Navigation