Skip to main content
Log in

Survey on chemical, physical, and thermal prediction behaviors for sequential chemical treatments used to obtain cellulose from Imperata Brasiliensis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of chemical treatment sequences on the chemical, physical, and mainly the thermal properties of Imperata Brasiliensis grass in the process used to obtain cellulose fibers were analyzed. The thermal properties were extensively investigated by a thermogravimetric analysis, and a thermal behavior prediction was carried out using kinetic parameters and simulation. Thermal simulations using statistical tools enable thermal predictions for any material under different conditions. However, they are currently not widely reported in the literature for untreated and treated natural fibers. We used an alkaline treatment and alkaline treatment followed by one, two, or three bleaching steps with hydrogen peroxide (H2O2) (24% v/v). After each chemical treatment, changes in chemical composition due to the removal of amorphous constituents were observed and confirmed by the analysis of properties such as coloration, density, porosity, crystallinity, and thermal decomposition. The alkaline treatment followed by one step of bleaching was the most effective and viable chemical treatment sequence to obtain cellulose. The changes in coloration from dark brown to light yellow were accompanied by increases in real density (65%), crystallinity (69%), and thermal stability (27.4%) upon one step of bleaching. In general, the subsequent bleaching steps provided similar values. The predicted thermal degradation profiles were compared with experimental data in order to validate the proposed degradation mechanisms and models. The obtained kinetic parameters adequately described the mass loss histories of the studied natural fibers, even when extremely simplified kinetic schemes were used. The degradation mechanisms consisted of diffusion followed by autocatalytic reactions for all studied fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vadivel V, Moncalvo A, Dordoni R, Spigno G. Effects of on acid/alkaline treatment on the release of antioxidants and cellulose from different agro food wastes. Waste Manag. 2017;64:305–14.

    Article  CAS  PubMed  Google Scholar 

  2. Csiszár E, Nagy SA. Comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticizers. Carbohyd Polym. 2017;174:740–9.

    Article  CAS  Google Scholar 

  3. Oliveira FBO, Bras J, Pimenta MTB, Curvelo AAS, Belgacem MN. Production of cellulose nanocrystals from sugarcane bagasse fibers and pith. Ind Crop Prod. 2016;93:48–57.

    Article  CAS  Google Scholar 

  4. Pereira PHF, Waldron KK, Wilson DR, Cunha AP, Brito ES, Rodrigues THS, Rosa MF, Azeredo HMC. Wheat straw hemicelluloses added with cellulose nanocrystals and citric acid. Effect on film physical properties. Carbohydr Polym. 2017;164:317–24.

    Article  CAS  PubMed  Google Scholar 

  5. Balakrishnan P, Sreekala MS, Kunaver M, Huskic M, Thomas S. Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr Polym. 2017;169:176–88.

    Article  CAS  PubMed  Google Scholar 

  6. Pereira PHF, Oliveira TIS, Rosa MF, Cavalcante FL, Moates GK, Wellner N, Waldron KK, Wilson DR, Azeredo HMC. Pectin extraction from pomegranate peels with citric acid. Int J Biol Macromol. 2016;88:373–9.

    Article  CAS  PubMed  Google Scholar 

  7. Mujtaba M, Slaberria AM, Andres MA, Kaya M, Gunyakti A, Labidi J. Utilization of flax (L. Usitatissimum) cellulose nanocomposite as reinforcing material for chitosan films. Int J Biol Macromol. 2017;104:944–52.

    Article  CAS  PubMed  Google Scholar 

  8. Rathore A, Pradhn MK. Hybrid nanocomposite bionanocomposites from banana and jute fibre: a Review of preparation, properties and applications. Mater today Proc. 2017;4:3942–51.

    Article  Google Scholar 

  9. Zhan Z, Li Y, Chen C. Synergic effects of cellulose nanocrystals and alkali on the mechanical properties of sisal fibers and their bonding properties with epoxy. Compos Part A Appl S. 2017;101:480–9.

    Article  CAS  Google Scholar 

  10. Siró I, Plackett D. Microfibrillated cellulose and new nanocomposites materials: a review. Cellulose. 2010;17:459–94.

    Article  CAS  Google Scholar 

  11. Sghaier AEO, Chaabouni Y, Msahli S, Sakli F. Morphological and crystalline characterization of NaOH and NaOCl treated Agave nanocomposite L. fiber. Ind Crop Prod. 2012;36:257–66.

    Article  CAS  Google Scholar 

  12. Kalia S, Kaith BS, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci. 2009;49:1253–72.

    Article  CAS  Google Scholar 

  13. Campos A, Teodoro KBR, Marconcini JM, Mattoso LHC. Efeito do Tratamento das Fibras nas Propriedades do Biocompósito de Amido Termoplástico/Policaprolactona/Sisal. Polímeros. 2011;21:217–22.

    Article  Google Scholar 

  14. Vestena M, Gross IP, Muller CMO, Pires ATN. Isolation of whiskers from natural sources and their dispersed in a non-aqueous medium. Polímeros. 2016. https://doi.org/10.1590/0104-1428.2367.

    Article  Google Scholar 

  15. Pereira ALS, Nascimento DM, Filho MMS, Morais JPS, Vasconcelos NF, Feitosa JPA, Brígida AIS, Rosa MF. Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym. 2014;112:165–72.

    Article  CAS  PubMed  Google Scholar 

  16. Rosa SML, Rehman N, Mirand MIG, Nachtigall SMB, Bica CID. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym. 2012;87:1131–8.

    Article  CAS  Google Scholar 

  17. Rout J, Misra M, Tripathy SS, Nayak SK, Mohanty AK. The influence of fibre treatment on the performance of coir-polyester composites. Compos Sci Technol. 2000;61:1303–10.

    Article  Google Scholar 

  18. Carvalho KCC, Mulinari DR, Voorwald HJC, Cioffi MOH. Chemical Modification Effect on the mechanical properties of HIPS/coconut fiber composites. BioResources. 2010;5:1143–55.

    CAS  Google Scholar 

  19. Pakzad A, Yassar RS. Mechanics of cellulose nanocrystals and their polymer composites. In: Ochsner A, Shokuhfar A, editors. New frontiers of nanoparticles and nanocomposite materials. Advanced structured materials, vol. 4. Berlin: Springer; 2010.

    Google Scholar 

  20. Corrêa AC, Teixeira EM, Pessan LA, Mattoso LHC. Cellulose nanofibers from curaua fibers. Cellulose. 2010;17:1183–92.

    Article  CAS  Google Scholar 

  21. Julkapli NM, Bagheri S. Progress on nanocrystalline cellulose biocomposites. React Funct Polym. 2017;112:9–21.

    Article  CAS  Google Scholar 

  22. Borsoi C, Ornaghi HL Jr, Scienza LC, Zattera AJ, Ferreira CA. Isolation and characterization of cellulose nanowhiskers from microcrystalline cellulose using mechanical processing. Polym Polym Compos. 2017;25:563–70.

    CAS  Google Scholar 

  23. Rao KM, Han AKS. Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int J Biol Macromol. 2017;101:165–71.

    Article  CAS  Google Scholar 

  24. Ornaghi HL Jr, Zattera AJ, Amico SC. Thermal behavior and the compensation effect of vegetal fibers. Cellulose. 2014;21:189–201.

    Article  CAS  Google Scholar 

  25. Ornaghi HL Jr, Zattera AJ, Amico SC. Dynamic mechanical properties and correlation with dynamic fragility of sisal reinforced composites. Polym Compos. 2015;36:161–6.

    Article  CAS  Google Scholar 

  26. Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer. Composites. 2011;42:856–73.

    Article  CAS  Google Scholar 

  27. Xu C, Hinks C, Sun C, Wei Q. Establishment of an activated peroxide system for low-temperature cotton bleaching using N-[4-(triethylammoniomethyl) benzoyl] butyrolactam chloride. Carbohydr Polym. 2015;119:71–7.

    Article  CAS  PubMed  Google Scholar 

  28. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  29. Poletto M, Ornaghi HL Jr, Zattera AJ. Thermal decomposition of natural fibers: kinetics and degradation mechanisms. New York: Wiley; 2015. p. 515–45.

    Google Scholar 

  30. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Pascúal-Cosp J, Benítez-Guerrero M. An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose. 2011;18:1487–98.

    Article  CAS  Google Scholar 

  31. Erceg M, Krešić I, Vrandečić NS, Jakić M. Different approaches to the kinetic analysis of thermal degradation of poly(ethylene oxide). J Therm Anal Calorim. 2018;131:315–34.

    Article  CAS  Google Scholar 

  32. Ourique PA, Ornaghi FG, Ornaghi HL Jr, Wanke CH, Bianchi O. Thermo-oxidative degradation kinetics of renewable hybrid polyurethane-urea obtained from air-oxidized soybean oil. J Therm Anal Calorim. 2019;137:1–11.

    Article  CAS  Google Scholar 

  33. Zanchet A, Demori R, de Souza FDB, Ornaghi HL Jr, Schiavo LSA, Scuracchio CH. Sugar cane as na alternative green activator to conventional vulcanization additives in natural rubber compounds: termal degradation study. J Clean Prod. 2019;207:248–60.

    Article  CAS  Google Scholar 

  34. Ornaghi FG, Bianchi O, Ornaghi HL Jr, Jacobi MAM. Fluoroelastomers reinforced with carbon nanofibers: a survey on rheological, swelling, mechanical, morphological, and prediction of the thermal degradation kinetic behavior. Polym Eng Sci. 2019;59:1223–32.

    Article  CAS  Google Scholar 

  35. Benini KCCC, Voorwald HJC, Cioffi MOH, Milanese AC, Ornaghi HL Jr. Characterization of a new lignocellulosic fiber from Brazil: imperata brasiliensis (Brazilian Satintail) as an alternative source for nanocellulose extraction. J Nat Fibers. 2016;14:112–25.

    Article  CAS  Google Scholar 

  36. Segal L, Creely J, Martin AE Jr, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J. 1959;29:786–94.

    Article  CAS  Google Scholar 

  37. French AD. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. 2014;21:885–96.

    Article  CAS  Google Scholar 

  38. Wada M, Okano T. Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose. 2001;8:183–8.

    Article  CAS  Google Scholar 

  39. Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–89.

    Article  CAS  PubMed  Google Scholar 

  40. Aziz SH, Ansell MP. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1—polyester resin matrix. Compos Sci Technol. 2004;64:1219–30.

    Article  CAS  Google Scholar 

  41. Defoirdt N, Biswas S, Vriese L, Tran LQN, Acker J, Ahsan Q, Gorbatikh L, Vuure AV, Verpoest I. Assessment of the tensile properties of coir, bamboo and jute fibre. Compos Part A Appl Sci Manuf. 2010;41:588–95.

    Article  CAS  Google Scholar 

  42. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM. Effect of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose. 2012;19:855–66.

    Article  CAS  Google Scholar 

  43. Jonoobi M, Harun J, Mathew AP, Oksman K. Mechanical properties of cellulose nanofiber (CNF) reinforced polyactic acid (PLA) prepared by twin screw extrusion. Compos Sci Tech. 2010;70:1742–7.

    Article  CAS  Google Scholar 

  44. Azubuike CP, Odulaja O, Okhamafe AO. Physicotechnical, spectroscopy and thermogravimetry properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells. J Excip Food Chem. 2016;3:106–15.

    Google Scholar 

  45. Ornaghi HL Jr, Moraes AF, Poletto M, Zattera AJ, Amico SC. Chemical composition, tensile properties and structural characterization of buriti fiber. Cell Chem Technol. 2016;50:15–22.

    CAS  Google Scholar 

  46. Satyaranayana GK, Flores-Sahagun THS, Santos LP, Santos J, Mazzaro I, Mikowski A. Characterization of blue agave bagasse fibers of Mexico. Compos Part A Appl Sci. 2013;45:153–61.

    Article  CAS  Google Scholar 

  47. Orfão JJM, Antunes FJA, Figueiredo JL. Pyrolysis kinetics of ignocellulosic materials—three independent reactions model. Fuel. 1999;78:349–58.

    Article  Google Scholar 

  48. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  49. Azwa ZN, Yousif BF. Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polym Degrad Stab. 2013;98:2752–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding: this work was supported by FAPESP (2011/14153-8 and 2015/10386-9), Capes and CNPq (Project Number (15335/2018-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly Cristina Coelho de Carvalho Benini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Benini, K.C.C., Ornaghi, H.L., Pereira, P.H.F. et al. Survey on chemical, physical, and thermal prediction behaviors for sequential chemical treatments used to obtain cellulose from Imperata Brasiliensis. J Therm Anal Calorim 143, 73–85 (2021). https://doi.org/10.1007/s10973-019-09221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09221-5

Keywords

Navigation