Skip to main content
Log in

Alloying the surface of AISI 2205 duplex stainless steel material by PTA welding method and making its thermomechanical investigation in ANSYS software

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

AISI 2205 steel is a duplex stainless steel plate containing 22% Cr, 3% Mo and 5–6% Ni and having the properties like high strength, impact toughness and corrosion resistance. In plasma transfer arc (PTA) welding method, the arc occurs between the tungsten electrode and the workpiece. In this study, the surface of AISI 2205 steel material was alloyed by PTA welding method using different combinations of TiC and B4C powders. The effect of B4C and TiC powders on AISI 2205 steel in coating process performed by PTA welding was investigated. The coating layer was investigated with the help of microhardness, optic microscope, SEM and XRD. As a result of optical microscope, microstructure examinations and microhardness values, it was determined that the coating layer and substrate were bonded to each other metallurgically, there was a significant increase in the hardness values in the presence of B4C and also metal carbide (MC) and metal boride (Me-B) phases formed in the structure. The highest increase in hardness was observed in the sample N4. TiC mixture decreased when B4C rate was 75% increased and the hardness values in the coating region by 330–457 HV. Finally, in the thermomechanical analysis results we found that axes-dependent thermal and residual stresses of the alloying layer increased along the welding. It is clear that the stress distribution along the weld line was the same. At both ends of the weld, there was only a small reduction in the stress size. It was determined that the highest stress concentration existed in the highest cross-sectional area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Shanghai Bozhong Metal Group Co., Ltd, https://www.bzmetal.com/product_detail/2205/s32205-duplex-stainless-steel-14719499024519672.html. Accessed 20 July 2019.

  2. Lo KH, Cheng FT, Man HC. Cavitation erosion mechanism of S31600 stainless steel laser surface-modified with unclad WC. Mater Sci Eng A. 2003;357:168–80. https://doi.org/10.1016/S0921-5093(03)00216-8.

    Article  CAS  Google Scholar 

  3. Bourithis L, Milonas Ath, Papadimitriou GD. Plasma transferred arc surface alloying of a construction steel to produce a metal matrix composite tool steel with TiC as reinforcing particles. Surf Coat Technol. 2003;165:286–95. https://doi.org/10.1016/S0257-8972(02)00744-2.

    Article  CAS  Google Scholar 

  4. Lu SP, Kwon OY, Guo Y. Wear behavior of brazed WC/NiCrBSi (Co) composite coatings. Wear. 2003;254:421–8. https://doi.org/10.1016/S0043-1648(03)00132-7.

    Article  CAS  Google Scholar 

  5. Fauchais PL, Heberlein JVR, Boulos MI. Plasma-transferred arc. In: Thermal spray fundamentals. Boston, MA: Springer; 2014.

  6. Takano EH, Queiroz DD, D’Oliveira ASCM. Evaluation of processing parameters on PTA hardfacing surfaces. Weld Int. 2010;24:1754–2138138. https://doi.org/10.1080/09507110902843974.

    Article  Google Scholar 

  7. Yaedu AE, D'Oliveira ASCM. Cobalt based alloy PTA hardfacing on different substrate steels. Mater Sci Technol. 2005;21:459–66. https://doi.org/10.1179/174328413X13789824293380.

    Article  CAS  Google Scholar 

  8. Sigolo E, Soyama J, Zepon G, Kiminami CS, Botta WJ, Bolfarini C. Wear resistant coatings of boron-modified stainless steels deposited by plasma transferred Arc. Surf Coat Technol. 2005;302:255–64. https://doi.org/10.1016/j.surfcoat.2016.06.023.

    Article  CAS  Google Scholar 

  9. Xibao W, Hua L. Metal powder thermal behaviour during the plasma transferred-arc surfacing process. Surf Coat Technol. 1998;106:156–61. https://doi.org/10.1016/S0257-8972(98)00521-0.

    Article  Google Scholar 

  10. Bourithis L, Papadimitriou GD. The effect of microstructure and wear conditions on the wear resistance of steel metal matrix composites fabricated with PTA alloying technique. Wear. 2009;266:1155–64. https://doi.org/10.1016/j.wear.2009.03.032.

    Article  CAS  Google Scholar 

  11. Xibao W, Chunguo L, Xiaomin P, Libo S, Hong Z. The powder's thermal behavior on the surface of the melting pool during PTA powder surfacing. Surf Coat Technol. 2006;201:2648–54. https://doi.org/10.1016/j.surfcoat.2006.05.009.

    Article  CAS  Google Scholar 

  12. Krishna BV, Misra VN, Mukherjee PS, Sharma P. Microstructure and properties of flame sprayed tungsten carbide coatings. Int J Refract Metal Hard Mater. 2002;20:355–74. https://doi.org/10.1016/S0263-4368(02)00073-2.

    Article  CAS  Google Scholar 

  13. Liu XB, Gu YJ. Plasma jet clad γ/Cr7C3 composite coating on steel. Mater Lett. 2006;60:577–80. https://doi.org/10.1016/j.matlet.2005.09.041.

    Article  CAS  Google Scholar 

  14. Skarvelis P, Papadimitriou GD. Plasma transferred arc composite coatings with self lubricating properties based on fe and ti sulfides microstructure and tribological behavior. Surf Coat Technol. 2009;203:1384–94. https://doi.org/10.1016/j.surfcoat.2008.11.010.

    Article  CAS  Google Scholar 

  15. Bourithis E, Tazedakis A, Papadimitriou G. A study on the surface treatment of “Calmax” tool steel by a plasma transferred arc (PTA) process. J Mater Process Technol. 2002;128:169–77. https://doi.org/10.1016/S0924-0136(02)00447-8.

    Article  CAS  Google Scholar 

  16. Huang Z, Hou Q, Wang P. Microstructure and properties of Cr3C2-modified nickel-based alloy coating deposited by plasma transferred arc process. Surf Coat Technol. 2008;202:2993–9. https://doi.org/10.1016/j.surfcoat.2007.10.033.

    Article  CAS  Google Scholar 

  17. Simutek Simulation Engineering Technologies, https://www.simutek.com.tr . Accessed 20 July 2019.

  18. Xibao W. The metallurgical behavior of B4C in the iron-based surfacing alloy during PTA powder surfacing. Appl Surf Sci. 2005;252(5):2021–8. https://doi.org/10.1016/j.apsusc.2005.03.171.

    Article  CAS  Google Scholar 

  19. Bourithis L, Papadimitriou G. Boriding a plain carbon steel with the plasma transferred arc process using boron and chromium diboride powders: microstructure and wear properties. Mater Lett. 2003;57(12):1835–9. https://doi.org/10.1016/S0167-577X(02)01077-7.

    Article  CAS  Google Scholar 

  20. Liu YF, Han JM, Li RH, Li WJ, Xu XY, Wang JH, Yang SZ. Microstructure and dry-sliding wear resistance of PTA clad (Cr, Fe)7C3/γ-Fe ceramal composite coating. Appl Surf Sci. 2006;252(20):7539–44. https://doi.org/10.1016/j.apsusc.2005.09.008.

    Article  CAS  Google Scholar 

  21. Gür AK, Kaya S. Abrasive wear resistance optimization of three different carbide coatings by the Taguchi method. Mater Test. 2017;59(5):450–5. https://doi.org/10.3139/120.111020.

    Article  Google Scholar 

  22. Taskaya S, Gur AK, Orhan A. Joining of Ramor 500 steel by submerged welding and its examination of thermal analysis in ANSYS package program. Therm Sci Eng Prog. 2019;11:84–110. https://doi.org/10.1016/j.tsep.2019.02.002.

    Article  Google Scholar 

  23. Taşkaya S, Yıldız T, Gür AK. The effect of voltage on joining of Ramor 500 armor steel with submerged arc welding method. Sak Univ J Sci. 2018;22(2):357–63. https://doi.org/10.16984/saufenbilder.355049.

    Article  Google Scholar 

  24. Taşkaya S. Investigation of mechanical and elastic stresses in ANSYS program by finite elements method of 3D lattice roof model. Mugla J Sci Technol. 2018;4(1):27–36. https://doi.org/10.22531/muglajsci.399522.

    Article  Google Scholar 

  25. Taşkaya S, Zengin B, Kaymaz K. Investigation of force and moment effect of St 37 and St 70 roof lattice steels in ANSYS program. Middle East J Sci. 2018;4(1):23–35. https://doi.org/10.23884/mejs.2018.4.1.04.

    Article  Google Scholar 

  26. Taskaya S, Taskaya S. Investigation of static structure effect according to axial coordinates by using finite element method in ANSYS workbench software of AISI 310 austenitic stainless cylindrical model steel. Int J Sci Eng Sci. 2018;2(11):65–70. https://doi.org/10.5281/zenodo.2538535.

    Article  Google Scholar 

  27. Yildiz T, Gür AK. Microstructural characteristic of N2 shielding gas in coating FeCrC composite to the surface of AISI 1030 steel with PTA method. Arch Metall Mater. 2011;56(3):723–9. https://doi.org/10.2478/v10172-011-0080-2.

    Article  CAS  Google Scholar 

  28. Xibao W, Xiaofeng W, Zhongquan S. The composite Fe–Ti–B–C Coatings by PTA powder surfacing process. Surf Coat Technol. 2005;192:257–62. https://doi.org/10.1016/j.surfcoat.2004.08.210.

    Article  CAS  Google Scholar 

  29. Yao MX, Wu JBC, Xu W, Liu R. Metallographic study and wear resistance of a high-C wrought Co-based alloy Stellite 706K. Mater Sci Eng A. 2005;407:291–8. https://doi.org/10.1016/j.msea.2005.07.053.

    Article  CAS  Google Scholar 

  30. Yılmaz O, Ozenbaş M, Korkut MH. Microstructural characteristics of gas tungsten arc synthesised Fe–Cr–Si–C coating. Mater Sci Technol. 2002;18:1209–16. https://doi.org/10.1179/026708302225005891.

    Article  CAS  Google Scholar 

  31. Liu YF, Xia ZY, Han JM, Zhang GL, Yang SZ. Microstructure and wear behavior of (Cr, Fe)7C3 reinforced composite coating produced by plasma transferred arc weld-surfacing process. Surf Coat Technol. 2006;201:863–7. https://doi.org/10.1016/j.surfcoat.2005.12.048.

    Article  CAS  Google Scholar 

  32. Taskaya S, Gur AK, Ozay C. Joining of Ramor 500 steel with SAW (submerged Arc welding) and its evaluation of thermomechanical analysis in ANSYS package software. Therm Sci Eng Prog. 2019. https://doi.org/10.1016/j.tsep.2019.100396.

    Article  Google Scholar 

  33. Zhao B. Analysis of temperature field in friction stir welding based on orthogonal ridgelet finite element method. J Therm Anal Calorim. 2016;123(2):1751–8. https://doi.org/10.1007/s10973-015-5014-1.

    Article  CAS  Google Scholar 

  34. Haţiegan C, Răduca M, Frunzăverde D, Răduca E, Pop N, Gillich GR. The modeling and simulation of the thermal analysis on the hydrogenerator stator winding insulation. J Therm Anal Calorim. 2013;113(3):1217–21. https://doi.org/10.1007/s10973-013-3089-0.

    Article  CAS  Google Scholar 

  35. Zhao B. Numerical simulation for the temperature changing rule of the crude oil in a storage tank based on the wavelet finite element method. J Therm Anal Calorim. 2012;107(1):387–93. https://doi.org/10.1007/s10973-011-1469-x.

    Article  CAS  Google Scholar 

  36. Răduca M, Haţiegan C, Pop N, Răduca E, Gillich GR. Finite element analysis of heat transfer in transformers from high voltage stations. J Therm Anal Calorim. 2014;118(2):1355–60. https://doi.org/10.1007/s10973-014-4070-2.

    Article  CAS  Google Scholar 

  37. Saari H, Seo D, Blumm J, Beddoes J. Thermophysical property determination of high temperature alloys by thermal analysis. J Therm Anal Calorim. 2003;73(1):381–8. https://doi.org/10.1023/A:1025130902174.

    Article  CAS  Google Scholar 

  38. Hebda M, Gądek S, Kazior J. Thermal characteristics and analysis of pyrolysis effects during the mechanical alloying process of Astaloy CrM powders. J Therm Anal Calorim. 2012;108(2):453–60. https://doi.org/10.1007/s10973-011-2130-4.

    Article  CAS  Google Scholar 

  39. Mihalache V. Thermal analysis of ball-milled Fe–14Cr–3W–0.4 Ti–0.25 Y2O3 ferritic steel powder. J Therm Anal Calorim. 2016;124(3):1179–92. https://doi.org/10.1007/s10973-016-5304-2.

    Article  CAS  Google Scholar 

  40. Kakitani R, de Gouveia GL, Garcia A, Cheung N, Spinelli JE. Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness. J Therm Anal Calorim. 2019;137(3):983–96. https://doi.org/10.1007/s10973-018-07992-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A simplified summary statement of this work was presented at the conference "2nd International Conference on Physical Chemistry and Functional Materials (PCFM’19)-June 25–27, 2019, Cappadocia-Turkey." Thank you to the members of the Congress.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semih Taskaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikbas, H., Taskaya, S. Alloying the surface of AISI 2205 duplex stainless steel material by PTA welding method and making its thermomechanical investigation in ANSYS software. J Therm Anal Calorim 139, 3847–3856 (2020). https://doi.org/10.1007/s10973-019-09204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09204-6

Keywords

Navigation