Skip to main content
Log in

Renewable energy resources and workforce case study Saudi Arabia: review and recommendations

Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Energy is linked to the most economic and social issues which affect sustainable development of countries. To diversify its economy sources, Saudi Arabia has planned to exploit renewable energy sources. The objective of this study is to analyze the resources of renewable energy in Saudi Arabia and the capabilities of their exploitation in terms of human resources. Indeed, studies show that the country has huge resources of renewable energy such as wind power, solar power and geothermal energy. However, the main source for electrical energy in Saudi Arabia is the fuel due to the high quantity of fuel produced. Using renewable energy does not have just economic aspect. Indeed, the protection of the environment and the planet is another objective of such policy. Wind and solar power will contribute remarkably in the energy future of Saudi Arabia. In fact, clear policy established by the higher authority of Ministry of Energy, Industry and Minerals resources, set a target to produce more than 40 GW of electricity from renewable energy by 2030. The renewable energy production chain will include research and development, industrial manufacturing of equipment and higher education to prepare qualified human resources. Therefore, the number of college and faculty of engineering offering courses in renewable energy should increase to prepare graduates able to manage renewable energy projects. Recommendations are addressed in this paper to advance, boost and enrich the higher education and scientific research in renewable energy field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abdmouleh Z, Alammari RAM, Gastli A. Review of policies encouraging renewable energy integration & best practices. Renew Sustain Energy Rev. 2015;45:249–62.

    Article  Google Scholar 

  2. Yoshino N, Taghizadeh-Hesary F. Alternatives to private finance: role of fiscal policy reforms and energy taxation in development of renewable energy projects. In: Anbumozhi V, Kalirajan K, Kimura F, editors. Financing for low-carbon energy transition. Singapore: Springer; 2018. p. 335–57.

    Chapter  Google Scholar 

  3. USA Energy Information Administration.

  4. World energy resources, report 2016.

  5. National transformation program of the Kingdom of Saudi Arabia 2020, report 2016.

  6. Vision of the Kingdom of Saudi Arabia 2030, report 2016.

  7. The global economy report, 2016.

  8. Gately D, Al-Yousef N, Al-Sheikh HMH. The rapid growth of domestic oil consumption in Saudi Arabia and the opportunity cost of oil exports foregone. Energy Policy. 2012;47:57–68.

    Article  Google Scholar 

  9. Alnatheer O. The potential contribution of renewable energy to electricity supply in Saudi Arabia. Energy Policy. 2005;33(18):2298–312.

    Article  Google Scholar 

  10. Rahman F, Rehman S, Abdul-Majeed MA. Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia. Renew Sustain Energy Rev. 2012;16(1):274–83.

    Article  CAS  Google Scholar 

  11. Al-Saleh Y. Renewable energy scenarios for major oil-producing nations: the case of Saudi Arabia. Futures. 2009;41(9):650–62.

    Article  Google Scholar 

  12. Saudi Arabia solar power market forecast and opportunities 2020, report 2016.

  13. Alshehry AS, Belloumi M. Energy consumption, carbon dioxide emissions and economic growth: the case of Saudi Arabia. Renew Sustain Energy Rev. 2015;41:237–47.

    Article  Google Scholar 

  14. Tlili I. Renewable energy in Saudi Arabia: current status and future potentials. Environ Dev Sustain. 2015;17(4):859–86. https://doi.org/10.1007/s10668-014-9579-9.

    Article  Google Scholar 

  15. Alawaji SH. Evaluation of solar energy research and its applications in Saudi Arabia 20 years of experience. Renew Sustain Energy Rev. 2001;5(1):59–77.

    Article  Google Scholar 

  16. Almasoud AH, Gandayh HM. Future of solar energy in Saudi Arabia. J King Saud Univ Eng Sci - Eng Sci. 2015;27(2):153–7.

    Google Scholar 

  17. Khurshid H, Silaipillayarputhur K. A Study on the solar radiation incident upon the overhead water tanks in Saudi Arabia with different configurations King Faisal University, KSA. Int J Eng Technol. 2018;7(3):991–5.

    Article  Google Scholar 

  18. Alawaji S. A key review on present status and future directions of solar energy studies and applications in Saudi Arabia. Renew Sustain Energy Rev. 2011;15(9):5021–50.

    Article  Google Scholar 

  19. Tsikalakis A, Tomts T, Hatziargyriou ND, Poullikkas A, Alamatenios C, Giakoumelos E, Jaouad OC. Review of best practices of solar electricity resources applications in selected Middle East and North Africa (MENA) countries. Renew Sustain Energy Rev. 2011;15:2838–49.

    Article  CAS  Google Scholar 

  20. Rehman S, Halawani TO, Mohandes M. Wind power cost assessment at twenty locations in the Kingdom of Saudi Arabia. Renew Energy. 2003;28(4):573–83.

    Article  Google Scholar 

  21. Rehman S, El-Amin IM, Ahmad F, Shaahida SM, Al-Shehri AM, Bakhashwain JM. Wind power resource assessment for Rafha, Saudi Arabia. Renew Sustain Energy Rev. 2007;11(5):937–50.

    Article  Google Scholar 

  22. Rehman S, Al-Abbadi NM. Wind shear coefficient, turbulence intensity and wind power potential assessment for Dhulom, Saudi Arabia. Renew Energy. 2008;33(12):2653–60.

    Article  Google Scholar 

  23. Naif L, Al-Abbadi M. Wind energy resource assessment for five locations in Saudi Arabia. Renew Energy. 2005;30(10):1489–99.

    Article  Google Scholar 

  24. Rehman S. Wind energy resources assessment for Yanbo, Saudi Arabia. Energy Convers Manag. 2004;45(13–14):2019–32.

    Article  Google Scholar 

  25. Chandarasekharam D, Lashin A, Al Arifi N. CO2 mitigation strategy through geothermal energy, Saudi Arabia. Renew Sustain Energy Rev. 2014;38:154–63.

    Article  CAS  Google Scholar 

  26. Lashin A, Al Arifi N. Geothermal energy potential of southwestern of Saudi Arabia “exploration and possible power generation”: a case study at Al Khouba area—Jizan. Renew Sustain Energy Rev. 2014;30:771–89.

    Article  Google Scholar 

  27. Munfath Khan MS, Kaneesamkandi Z. Biodegradable waste to biogas: renewable energy option for the Kingdom of Saudi Arabia. Int J Innov Appl Stud. 2013;4(1):101–13.

    Google Scholar 

  28. Ramlia MAM, Hiendro A, Sedraoui K, Twahac SS. Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia. Renew Energy. 2015;75:489–95.

    Article  Google Scholar 

  29. Malik K, Rahman SM, Khondaker AN, et al. Renewable energy utilization to promote sustainability in GCC countries: policies, drivers, and barriers. Environ Sci Pollut Res. 2019;26:20798. https://doi.org/10.1007/s11356-019-05337-1.

    Article  CAS  Google Scholar 

  30. Lashina A, Chandrasekharam D, Al Arifi N, Al Bassam A, Varun C. Geothermal energy resources of wadi Al-Lith, Saudi Arabia. J Afr Earth Sci. 2014;97:357–67.

    Article  CAS  Google Scholar 

  31. Taleb HM. Barriers hindering the utilisation of geothermal resources in Saudi Arabia. Energy Sustain Dev. 2009;13(3):183–8.

    Article  Google Scholar 

  32. Lashin A, et al. Geothermal energy resources of Saudi Arabia: country update. In: Proceedings world geothermal congress 2015, Melbourne, Australia, 19–25 Apr 2015.

  33. Rehman S. Saudi Arabian geothermal energy resources: an update. In: Proceedings world geothermal congress 2010, Bali, Indonesia, 25–29 Apr 2010.

  34. Rehman S, Shasha A. Geothermal resources of Saudi Arabia: country update report. In: Proceedings world geothermal congress 2005, Antalya, Turkey, 24–29 Apr 2005.

  35. Goosen M, Mahmoudi H, Ghaffour N. Water desalination using geothermal energy. Energies. 2010;3(8):1423–42. https://doi.org/10.3390/en3081423.

    Article  CAS  Google Scholar 

  36. Alyahya S, Irfan MA. Role of Saudi universities in achieving the solar potential 2030 target. Energy Policy. 2016;91:325–8.

    Article  Google Scholar 

  37. Trans-Mediterranean Renewable Energy Cooperation TREC.

  38. El-Sebaii AA, Al-Hazmi FS, Al-Ghamdi AA, Yaghmour SJ. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia. Appl Energy. 2010;87(2):568–76.

    Article  Google Scholar 

  39. Shaahid SM, El-Amin I. Techno-economic evaluation of off-grid hybrid photovoltaic–diesel–battery power systems for rural electrification in Saudi Arabia—a way forward for sustainable development. Renew Sustain Energy Rev. 2009;13(3):625–33.

    Article  CAS  Google Scholar 

  40. Karimipour A. Provide a suitable range to include the thermal creeping effect on slip velocity and temperature jump of an air flow in a nanochannel by lattice Boltzmann method. Physica E. 2017;85:143–51.

    Article  CAS  Google Scholar 

  41. Karimipour A. New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method. Int J Therm Sci. 2015;91:146–56.

    Article  CAS  Google Scholar 

  42. Karimipour A. A novel case study for thermal radiation through a nanofluid as a semitransparent medium via discrete ordinates method to consider the absorption and scattering of nanoparticles along the radiation beams coupled with natural convection. Int Commun Heat Mass Transf. 2017;87:256–69.

    Article  CAS  Google Scholar 

  43. Li Z, Shahrajabian H, Bagherzadeh SA, Jadidi H, Karimipour A, Tlili I. Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via suitable experiments as a function of MMT content. Phys A Stat Mech Appl. 2020;537:122637.

    Article  CAS  Google Scholar 

  44. Hassani M, Karimipour A. Discrete ordinates simulation of radiative participating nanofluid natural convection in an enclosure. J Therm Anal Calorim. 2018;134(3):2183–95.

    Article  CAS  Google Scholar 

  45. Ershadi H, Karimipour A. Present a multi-criteria modeling and optimization (energy, economic and environmental) approach of industrial combined cooling heating and power (CCHP) generation systems using the genetic algorithm, case study: a tile factory. Energy. 2018;149:286–95.

    Article  Google Scholar 

  46. Karimipour A, D’Orazio A, Shadloo MS. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Physica E. 2017;86:146–53.

    Article  CAS  Google Scholar 

  47. Ghasemi S, Karimipour A. Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid. Appl Therm Eng. 2018;128:189–97.

    Article  CAS  Google Scholar 

  48. Mozaffari M, Karimipour A, D’Orazio A. Increase lattice Boltzmann method ability to simulate slip flow regimes with dispersed CNTs nanoadditives inside. J Therm Anal Calorim. 2019;137(1):229–43.

    Article  CAS  Google Scholar 

  49. Sulgani MT, Karimipour A. Improve the thermal conductivity of 10w40-engine oil at various temperature by addition of Al2O3/Fe2O3 nanoparticles. J Mol Liq. 2019;283:660–6.

    Article  CAS  Google Scholar 

  50. D’Orazio A, Karimipour A. A useful case study to develop lattice Boltzmann method performance: gravity effects on slip velocity and temperature profiles of an air flow inside a microchannel under a constant heat flux boundary condition. Int J Heat Mass Transf. 2019;136:1017–29.

    Article  Google Scholar 

  51. Jalali E, Karimipour A. Simulation the effects of cross-flow injection on the slip velocity and temperature domain of a nanofluid flow inside a microchannel. Int J Numer Methods Heat Fluid Flow. 2019;29(5):1546–62.

    Article  Google Scholar 

  52. Sedeh RN, Abdollahi A, Karimipour A. Experimental investigation toward obtaining nanoparticles’ surficial interaction with basefluid components based on measuring thermal conductivity of nanofluids. Int Commun Heat Mass Transf. 2019;103:72–82.

    Article  CAS  Google Scholar 

  53. Tlili I, Timoumi Y, Ben Nasrallah S. Numerical simulation and losses analysis in a Stirling engine. Int J Heat Technol. 2006;24(1):97–105.

    Google Scholar 

  54. Tlili I, Timoumi Y, Ben Nasrallah S. Thermodynamic analysis of Stirling heat engine with regenerative losses and internal irreversibilities. Int J Engine Res. 2007;9:45–56.

    Article  Google Scholar 

  55. Timoumi Y, Tlili I, Ben Nasrallah S. Performance optimization of Stirling engines. Renew Energy. 2008;33:2134–44.

    Article  CAS  Google Scholar 

  56. Ahmadi MH, Ahmadi MA, Pourfayaz F, Hosseinzade H, Acıkkalp E, Tlili I, Feidt M. Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach. Renew Sustain Energy Rev. 2016;62:585–95.

    Article  Google Scholar 

  57. Saed A, Tlili I. Numerical investigation of working fluid effect on Stirling engine performance. Int J Therm Environ Eng. 2015;10(1):31–6.

    Google Scholar 

  58. Tlili I. Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions. Renew Sustain Energy Rev. 2012;16:2234–41.

    Article  Google Scholar 

  59. Tlili I. Thermodynamic study on optimal solar stirling engine cycle taking into account the irreversibilities effects. Energy Procedia. 2012;14:584–91.

    Article  Google Scholar 

  60. Tlili I. A numerical investigation of an alpha Stirling engine. Int J Heat Technol. 2012;30:23–35.

    Google Scholar 

  61. Tlili I, Musmar SA. Thermodynamic evaluation of a second order simulation for Yoke Ross Stirling engine. Energy Convers Manag. 2013;68:149–60. https://doi.org/10.1016/j.enconman.2013.01.005

    Article  Google Scholar 

  62. Tlili I, Timoumi Y, Nasrallah SB. Analysis and design consideration of mean temperature differential Stirling engine for solar application. Renew Energy. 2008;33:1911–21.

    Article  CAS  Google Scholar 

  63. Timoumi Y, Tlili I, Nasrallah SB. Design and performance optimization of GPU-3 Stirling engines. Energy. 2008;33:1100–14.

    Article  Google Scholar 

  64. Timoumi Y, Tlili I, Nasrallah SB. Reduction of energy losses in a Stirling engine. Heat Technol. 2007;25(1):84–93.

    Google Scholar 

  65. Tlili I. Tawfeeq Abdullah Alkanhal, Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin. 2019. https://doi.org/10.2166/wrd.2019.057.

    Article  Google Scholar 

  66. Al-Qawasmi A-R, Tlili I. Energy efficiency audit based on wireless sensor and actor networks: air-conditioning investigation. J Eng. 2018;1:1. https://doi.org/10.1155/2018/3640821.

    Article  Google Scholar 

  67. Abdel-Rahman Al-Qawasmi I. Tlili, Energy efficiency and economic impact investigations for air-conditioners using wireless sensing and actuator networks. Energy Rep. 2018;4:478–85. https://doi.org/10.1016/j.egyr.2018.08.001.

    Article  Google Scholar 

  68. Tlili I, Khan WA, Ramadan K. MHD flow of nanofluid flow across horizontal circular cylinder: steady forced convection. J Nanofluids. 2019;8(1):179–86. https://doi.org/10.1166/jon.2019.1574.

    Article  Google Scholar 

  69. Tlili I, Khan WA, Ramadan K. Entropy generation due to MHD stagnation point flow of a nanofluid on a stretching surface in the presence of radiation. J Nanofluids. 2018;7(5):879–90. https://doi.org/10.1166/jon.2018.1513.

    Article  Google Scholar 

  70. Almutairi MM, Osman M, Tlili I. Thermal behavior of auxetic honeycomb structure: an experimental and modeling investigation. ASME J Energy Resour Technol. 2018;140(12):122904. https://doi.org/10.1115/1.4041091.

    Article  Google Scholar 

  71. Tlili I, Hamadneh NN, Khan WA. Thermodynamic analysis of MHD heat and mass transfer of nanofluids past a static wedge with navier slip and convective boundary conditions. Arab J Sci Eng. 2018. https://doi.org/10.1007/s13369-018-3471-0.

    Article  Google Scholar 

  72. Tlili I, Hamadneh NN, Khan WA, Atawneh S. Thermodynamic analysis of MHD Couette–Poiseuille flow of water-based nanofluids in a rotating channel with radiation and Hall effects. J Therm Anal Calorim. 2018;132(3):1899–912. https://doi.org/10.1007/s10973-018-7066-5.

    Article  CAS  Google Scholar 

  73. Ramadan K, Tlili I. Shear work, viscous dissipation and axial conduction effects on microchannel heat transfer with a constant wall temperature. Proc Inst Mech Eng Part C J Mech Eng Sci. 2016;230(14):2496–507. https://doi.org/10.1177/0954406215598799.

    Article  Google Scholar 

  74. Dehghani Y, Abdollahi A, Karimipour A. Experimental investigation toward obtaining a new correlation for viscosity of WO3 and Al2O3 nanoparticles-loaded nanofluid within aqueous and non-aqueous basefluids. J Therm Anal Calorim. 2019;135(1):713–28.

    Article  CAS  Google Scholar 

  75. Bagherzadeh SA, Sulgani MT, Nikkhah V, Bahrami M, Karimipour A, Jiang Y. Minimize pressure drop and maximize heat transfer coefficient by the new proposed multi-objective optimization/statistical model composed of” ANN + genetic algorithm” based on empirical data of CuO/paraffin nanofluid in a pipe. Physica A. 2019;527:121056.

    Article  CAS  Google Scholar 

  76. Mahyari AA, Karimipour A, Afrand M. Effects of dispersed added graphene oxide-silicon carbide nanoparticles to present a statistical formulation for the mixture thermal properties. Physica A. 2019;521:98–112.

    Article  CAS  Google Scholar 

  77. Shahzadi I, Nadeem S. Analysis of Ag/blood-mediated transport in curved annulus with exclusive nature of convective boundary. Phys Scr. 2019;94(11):115011.

    Article  CAS  Google Scholar 

  78. Khan AU, Hussain ST, Nadeem S. Existence and stability of heat and fluid flow in the presence of nanoparticles along a curved surface by mean of dual nature solution. Appl Math Comput. 2019;353:66–81.

    Google Scholar 

  79. Ahmed Z, Al-Qahtani A, Nadeem S, Saleem S. Computational study of MHD nanofluid flow possessing micro-rotational inertia over a curved surface with variable thermophysical properties. Processes. 2019;7(6):387.

    Article  CAS  Google Scholar 

  80. Hussain A, Zetoon R, Ali S, Nadeem S. Magnetically driven flow of pseudoplastic fluid across a sensor surface. J Braz Soc Mech Sci Eng. 2019;41(4):185.

    Article  Google Scholar 

  81. Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid. RSC Adv (RSC Publ). https://doi.org/10.1039/c8ra09698h [Online]. https://pubs.rsc.org/en/content/articlehtml/2019/ra/c8ra09698h. Accessed 01 Dec 2019.

  82. Nadeem S, Hayat T, Khan AU. Numerical study of 3D rotating hybrid SWCNT–MWCNT flow over a convectively heated stretching surface with heat generation/absorption. Phys Scr. 2019;94(7):075202.

    Article  CAS  Google Scholar 

  83. Hayat T, Nadeem S, Khan AU. Aspects of 3D rotating hybrid CNT flow for a convective exponentially stretched surface. Appl Nanosci. 2019.

  84. Vo DD, Saleem S, Alderremy AA, Nguyen TK, Nadeem S, Li Z. Heat transfer enhancement and migration of ferrofluid due to electric force inside a porous medium with complex geometry. Phys Scr. 2019;94(11):115218. https://doi.org/10.1088/1402-4896/ab24ff

    Article  CAS  Google Scholar 

  85. Effects of MHD on modified nanofluid model with variable viscosity in a porous medium | IntechOpen. [Online]. https://www.intechopen.com/online-first/effects-of-mhd-on-modified-nanofluid-model-with-variable-viscosity-in-a-porous-medium. Accessed 01 Dec 2019.

  86. Muhammad N, Nadeem S, Mustafa MT. Hybrid isothermal model for the ferrohydrodynamic chemically reactive species. Commun Theor Phys. 2019;71(4):384.

    Article  CAS  Google Scholar 

  87. Nadeem S, Khan MR, Khan AU. MHD stagnation point flow of viscous nanofluid over a curved surface. Phys Scr. 2019;94(11):115207.

    Article  CAS  Google Scholar 

  88. Heat transfer of three-dimensional micropolar fluid on a Riga plate. Can J Phys [Online]. https://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2018-0973#.XeNTpegzbIU. Accessed 01 Dec 2019.

  89. Subhani M, Nadeem S. Numerical investigation into unsteady magnetohydrodynamics flow of micropolar hybrid nanofluid in porous medium. Phys Scr. 2019;94(10):105220.

    Article  CAS  Google Scholar 

  90. Ahmad S, Nadeem S, Muhammad N. Boundary layer flow over a curved surface imbedded in porous medium. Commun Theor Phys. 2019;71(3):344.

    Article  CAS  Google Scholar 

  91. Hussain A, Akbar S, Sarwar L, Nadeem S, Iqbal Z. Effect of time dependent viscosity and radiation efficacy on a non-Newtonian fluid flow. Heliyon. 2019;5(2):e01203.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Tlili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barhoumi, E.M., Okonkwo, P.C., Zghaibeh, M. et al. Renewable energy resources and workforce case study Saudi Arabia: review and recommendations. J Therm Anal Calorim 141, 221–230 (2020). https://doi.org/10.1007/s10973-019-09189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09189-2

Keywords

Navigation