Skip to main content
Log in

Effects of rotation number on heat transfer and fluid flow in a three-pass serpentine passage with lateral outflow

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of this study is to experimentally and numerically investigate the effects of rotation number on heat transfer and fluid flow in a three-pass serpentine passage with lateral outflow. In the present study, the rotation number varies from 0 to 0.09, and the inlet Reynolds number is 5000. The heat transfer coefficient distribution of the three-pass serpentine passage is measured using the transient liquid crystal technique. The current work fills the research gap of the effect of rotation number on heat transfer distribution in a three-pass serpentine passages with lateral outflow. The results of this study show that the span-wise-averaged Nusselt numbers in the region of l/d < 16 and l/d > 33.6 increase monotonically with the rotation number increasing, particularly in l/d = 6.4, with a maximum increase of 58.5%. However, the rotation reduces the Nusselt numbers of the middle passage by between 2.6 and 7.3% when the rotation number increases from 0 to 0.06. The area-averaged Nusselt numbers rapidly decrease in the area of Ai = 4; this phenomenon is more obvious at higher rotation numbers, and the maximum decrease is 34.6%. The pressure coefficient in the region of l/d < 14 tends to increase gradually along the flow direction when Ro = 0.09. The rotation changes the flow direction and shrinks the vortex size in the lateral-outflow passage. Accordingly, the pressure coefficient rapidly increases by 74.1% in the lateral-outflow passage when Ro = 0.06 and Ro = 0.09.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

D f :

Hole diameter (m)

X :

Coordinate direction (m)

T :

Temperature (K)

A :

Area of inlet (m2)

d :

Hydraulic diameter of channel inlet (m)

l :

Distance from the channel inlet

v :

Flow velocity (m s−1)

v 0 :

Flow velocity of inlet (m s−1)

R :

Rotation radius (m)

M inlet :

Inlet mass flow rate of inlet (kg s−1)

M i :

i outlet mass flow rate (kg s−1)

Re:

Reynolds number

Rew :

Rotation Reynolds number

Ro:

Rotation number

T 0 :

Initial temperature (K)

T w,av :

Averaged wall temperature (K)

P :

Pressure (Pa)

P 0 :

Static pressure of inlet (Pa)

Nu:

Nusselt number

C p :

Pressure coefficient

q :

Heat flux (W m−2)

c :

Specific heat capacity (J kg−1 K−1))

h :

Heat transfer coefficient (W m−2 K−1)

Cal:

Calculation

Exp:

Experiment

τ :

Color change time (s)

μ :

Mainstream viscosity coefficient (Pa s)

λ :

Heat conductivity coefficient (W m−1 K−1)

ρ :

Mainstream density (kg m−3)

ω :

Rotation rate (rad s−1)

θ :

Excess temperature (K)

g:

Mainstream

inlet:

Channel inlet

w:

Wall

aw:

Adiabatic wall

ave:

Average

cor:

Corrector

i:

Test point number

References

  1. Chyu MK. Regional heat transfer and pressure drop in two-pass flow passages with 180-degree sharp turns. ASME J Heat Transf. 1991;113:63–70.

    Article  Google Scholar 

  2. Zhao YC, Tao WQ. A three dimensional investigation of turbulent flow and heat transfer around sharp 180-deg turns in two-pass rib-roughened channel. Int Commun Heat Mass Transf. 1997;24(4):587–96.

    Article  CAS  Google Scholar 

  3. Metzger DE, Sahm MK. Heat transfer around sharp 180 degree turns in smooth rectangular channels. ASME J Heat Transf. 1986;108:500–6.

    Article  CAS  Google Scholar 

  4. Han JC, Huh M. Recent studies in turbine blade internal cooling. Heat Transf Res. 2010;41(8):803–28.

    Article  Google Scholar 

  5. Han JC. Fundamental gas turbine heat transfer. J Therm Sci Eng Appl. 2013;5(2):021007.

    Article  CAS  Google Scholar 

  6. Ekkad SV, Han JC. Detailed heat transfer distribution in two-pass square channels with rib turbulators. Int J Heat Mass Transf. 1997;40:2523–37.

    Article  Google Scholar 

  7. Taslim ME, Li T. Measurement of heat transfer coefficient and friction factors in passages rib-roughened on all walls. ASME J Turbomach. 1998;120:564–70.

    Article  Google Scholar 

  8. Huang SC, Liu YH. High rotation number effect on heat transfer in a leading edge cooling channel with three channel orientations. ASME paper GT2012-68389. 2012.

  9. Schroll M, Lange L, Elfert M. Investigation of the effect of rotation on the flow in a two-pass cooling system with smooth and ribbed walls using PIV. ASME paper GT2011-46427. 2011.

  10. Egger C, Wolgersdorf J, Schnieder M. Heat transfer measurements in an internal cooling system using a transient technique with infrared thermography. ASME paper GT2012-69160. 2012.

  11. Mayo I, Arts T, Clinemsillie J, et al. Spatially resolved heat transfer coefficient in a rib-roughened channel under Coriolis effects. ASME paper GT2013-94506. 2013.

  12. Bunker RS, Wetzel TG, Rigby DL. Heat transfer in a complex trailing edge passage for a high pressure turbine blade—part 1: experimental measurements. ASME paper GT2002-30212. 2002.

  13. Coletti F, Armellini A, Arts T, et al. Aero-thermal investigation of a rib-roughened trailing edge channel with crossing-jets—part II: heat transfer analysis. ASME paper GT2008-50695. 2008.

  14. Fave L, Pouchon MA, Hebert C. A radial heat flow apparatus for thermal conductivity characterisation of cylindrical samples. J Therm Anal Calorim. 2017;130:1855–63.

    Article  CAS  Google Scholar 

  15. Shadloo MS, Mahian O. Recent advances in heat and mass transfer. J Therm Anal Calorim. 2019;135:1611–5.

    Article  CAS  Google Scholar 

  16. Hosseinnejad R, Hosseini M, Farhadi M. Turbulent heat transfer in tubular heat exchangers with twisted tape. J Therm Anal Calorim. 2019;135(3):1863–9.

    Article  CAS  Google Scholar 

  17. Omidi M, Darzi AAR, Farhadi M. Turbulent heat transfer and fluid flow of alumina nanofluid inside three-lobed twisted tube. J Therm Anal Calorim. 2019;137:1451–62.

    Article  CAS  Google Scholar 

  18. Azimian FA, Azizi Z. Experimental study of extraction fraction and mass transfer coefficient in a microchannel using butyl acetate/acetic acid/water chemical system. J Therm Anal Calorim. 2018;133:945–50.

    Article  CAS  Google Scholar 

  19. Abdelrazek AH, Kazi AN, Alawi OA, et al. Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08562-5.

    Article  Google Scholar 

  20. Nikoozadeh A, Behzadmehr A, Payan S. Numerical investigation of turbulent heat transfer enhancement using combined propeller-type turbulator and nanofluid in a circular tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08578-x.

    Article  Google Scholar 

  21. Gorjaei AR, Shahidian A. Heat transfer enhancement in a curved tube by using twisted tape insert and turbulent nanofluid flow. J Therm Anal Calorim. 2019;137:1059–68.

    Article  CAS  Google Scholar 

  22. Sakhaei M, Abdi A, Sabri F, et al. Experimental and numerical analysis of transient heat transfer from inclined tube bundles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08425-z.

    Article  Google Scholar 

  23. Salami M, Khoshvaght-Aliabadi MK, Feizabadi A. Investigation of corrugated channel performance with different wave shapes: Nanofluid as working media. J Therm Anal Calorim. 2019;138(6):3159–74.

    Article  CAS  Google Scholar 

  24. Wu PS, Chang S, Chen CS, Weng CC, Jiang YR, Shih SH. Numerical flow and experimental heat transfer of S-shaped two-pass square channel with cooling applications to gas turbine blade. Int J Heat Mass Transf. 2017;108:362–73.

    Article  CAS  Google Scholar 

  25. Khalid A, Xie G, Sunden B. Numerical simulations of flow structure and turbulent heat transfer in a square ribbed channel with varying rib pitch ratio. J Enhanc Heat Transf. 2016;23(2):155–74.

    Article  CAS  Google Scholar 

  26. Xie G, Zheng S, Sundén B. Heat transfer and flow characteristics in Rib-/deflector-roughened cooling channels with various configuration parameters. Numer Heat Transf Part A Appl. 2015;67(2):140–69.

    Article  CAS  Google Scholar 

  27. Omid AA, Davood T, Arash K, et al. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Appl Math Comput. 2016;290:135–53.

    Google Scholar 

  28. Habibollah A, Arash K, Mohammad RS, et al. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Phys E Low-dimens Syst Nanostruct. 2017;88:60–76.

    Article  CAS  Google Scholar 

  29. Shamsi MR, Omid AA, Marzban A, et al. Impact of ribs on flow parameters and laminar heat transfer of water-aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Adv Mech Eng. 2015;7(11):1687814015618155.

    Google Scholar 

  30. Alireza B, Mohammad NK, Sajjad H, et al. The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq. 2017;236:254–65.

    Article  CAS  Google Scholar 

  31. Shamsi MR, Omid AA, Marzban A, et al. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Phys E Low-Dimens Syst Nanostruct. 2017;93:167–78.

    Article  CAS  Google Scholar 

  32. Mousa H, Davood T, Omid AA, et al. The effect of semi-attached and offset mid-truncated ribs and Water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel. Therm Sci Eng Prog. 2017;2:140–50.

    Article  Google Scholar 

  33. Farzad P, Mahdi M, Ghanbarali S, et al. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water–Al2O3 nanofluid in a tube. Int J Mech Sci. 2017;131:1106–16.

    Google Scholar 

  34. Mohammad P, Farzad P, Omid AA, et al. Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel. Phys E Low-Dimens Syst Nanostruct. 2018;96:73–84.

    Article  CAS  Google Scholar 

  35. Mohammad RG, Omid AA, Ali M, et al. The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel. J Therm Anal Calorim. 2018;134:1611–28.

    Article  CAS  Google Scholar 

  36. Davood T, Mohammad M, Omid AA, et al. The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels. J Therm Anal Calorim. 2019;135(1):145–59.

    Article  CAS  Google Scholar 

  37. Erfan K, Seyed AR, Mohammad J, et al. Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. J Therm Anal Calorim. 2019;136(3):1333–45.

    Article  CAS  Google Scholar 

  38. Omid AA, Davood T, Arash K, et al. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Appl Math Comput. 2016;290(C):135–53.

    Google Scholar 

  39. Navid AC, Omid AA. Computational fluid dynamics and laminar heat transfer of water/Cu nanofluid in ribbed microchannel with a two-phase approach. Int J Numer Methods Heat Fluid Flow. 2018;29:1563–89.

    Google Scholar 

  40. Tohraie DS, Akbari OA, Koveiti A, et al. Numerical investigation of turbulence nanofluid flow and two dimensional forced-convection heat transfer in a sinusoidal converging-diverging channel. Heat Transf Res. 2019;50(7):670–95.

    Google Scholar 

  41. Tohraie D. Numerical thermal analysis of water’s boiling heat transfer based on a turbulent jet impingement on heated surface. Phys E. 2016;84:454–65.

    Article  CAS  Google Scholar 

  42. Akbari OA, Tohraie DS, Karimipour A. Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib. Adv Mech Eng. 2016;8(4):1687814016641016.

    Article  CAS  Google Scholar 

  43. Hosseinnezhad R, Akbari OA, Afrouzi HH, et al. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2019;132(1):741–59.

    Article  CAS  Google Scholar 

  44. Pourdel H, Afrouzi HH, Akbari OA, et al. Numerical investigation of turbulent flow and heat transfer in flat tube. J Therm Anal Calorim. 2019;135(6):3471–83.

    Article  CAS  Google Scholar 

  45. Vedula RJ, Metzger DE. A method for the simultaneous determination of local effectiveness and heat transfer distributions in three temperature convection situations. ASME paper-91-GT-345. 1991.

  46. Chambers AC, Gillespie DRH, Ireland PT. A novel transient liquid crystal technique to determine heat transfer coefficient distributions and adiabatic wall temperature in a three temperature problem. J Turbomach. 2003;125:538–46.

    Article  Google Scholar 

  47. Huang SC, Wang CC, Liu YH. Heat transfer measurement in a rotation cooling channel with staggered and inline pin-fin arrays using liquid crystal and stroboscopy. Int J Heat Mass Transf. 2017;115:364–76.

    Article  Google Scholar 

  48. Singh P, Li W, Ekkad SV, et al. A new cooling design for rib roughened two-pass channel having positive effects of rotation on heat transfer enhancement on both pressure and suction side internal walls of a gas turbine blade. Int J Heat Mass Transf. 2017;115:6–20.

    Article  Google Scholar 

  49. Liu C, Zhu HR, Bai J, et al. Film cooling performance of converging-slot holes with different exit-entry area ratios. J Turbomach. 2011;133:011020–1.

    Article  Google Scholar 

  50. Wei Z, Zhu HR, Li GC, et al. Experimental investigation on flow resistance and heat transfer coefficient of internal lamilloy. ASME paper GT2016-56105. 2016.

  51. Ireland PT, Jones TV. Liquid crystal measurements of heat transfer and surface shear stress. Meas Sci Technol. 2000;11:969–86.

    Article  CAS  Google Scholar 

  52. Wei C. Improvement on convention transient thermal measurement on turbine blade. China: SHANGHAI JIAO TONG UNIVERSITY; 2013.

    Google Scholar 

  53. Yan Y, Owen JM. Uncertainties in transient heat transfer measurements with liquid crystal. Int J Heat Fluid Flow. 2002;23:29–35.

    Article  Google Scholar 

  54. Kline SJ, Mcclintock F. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75(1):3–8.

    Google Scholar 

  55. Stasiek J, Stasiek A, Jewartowski M, et al. Liquid crystal thermography and true-colour digital image processing. Opt Laser Technol. 2006;38(4):243–56.

    Article  Google Scholar 

  56. Shih TH, Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J. A new–Eddy-viscosity model for high Reynolds number turbulent flows–model development and validation. Comput Fluids. 1995;24:3.

    Article  Google Scholar 

  57. Liou TM, Chen MY, Wang YM. Heat transfer, fluid flow, and pressure measurements inside a rotating two-pass duct with detached 90° ribs. J Turbomach. 2003;3:389–400.

    Google Scholar 

  58. Liou TM, Chen CC. Heat transfer in a rotating two-pass smooth passage with 180° rectangular turn. Int J Heat Mass Transf. 1999;42:231–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge gratefully the financial support from the National Natural Science Foundation of China (Grant No. 51776173) and National Science and Technology Major Project (Grant No. 2017-Ш-0003-0027) and the Innovation Capacity Support Plan in Shaanxi Province of China (Grant No. 2019KJXX-065).

Funding

This study was funded by National Natural Science Foundation of China (Grant No. 51776173) and National Science and Technology Major Project (Grant No. 2017-Ш-0003-0027) and the Innovation Capacity Support Plan in Shaanxi Province of China (Grant No. 2019KJXX-065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-ren Zhu or Cun-liang Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Bl., Zhu, Hr. & Liu, Cl. Effects of rotation number on heat transfer and fluid flow in a three-pass serpentine passage with lateral outflow. J Therm Anal Calorim 143, 309–325 (2021). https://doi.org/10.1007/s10973-019-09186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09186-5

Keywords

Navigation