Skip to main content
Log in

Combustion behavior and thermal stability of TPU composites based on layered yttrium hydroxides and graphene oxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Layered yttrium hydroxides (LYH)- and graphene oxide (GO)-supported layered yttrium hydroxides (GO–LYH) were synthesized by a co-precipitation route. The additives were characterized by X-ray diffraction and Fourier transform infrared spectra. The LYH were homogeneously dispersed on the GO sheets, demonstrated by the transmission electron microscope analysis. Composites of TPU/LYH and TPU/GO–LYH were prepared by a melt-blending method. The morphologies and structures of the composites, revealed by scanning electron microscope, ascertained that the dispersion of the GO–LYH in the TPU was better because of the strong interaction of the hydrogen bonds between oxygen-containing groups and hydroxyl groups. The fire retardancy of the TPU composites was evaluated using limiting oxygen index (LOI), cone calorimetry and thermogravimetric analysis. The TPU/LYH and TPU/GO–LYH composites, filled with 10 mass% LYH, 9 mass% GO, achieved LOI values of 24.4% and 25.3%, while there was a 67.42% and 70.88% decline of PHRR compared with pure TPU. The improved flame retardancy and smoke suppression were attributed to the physical barrier of GO and the catalytic carbonization of LYH indicated by char analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Toldyab A, Szolnoki B, Zimonyi E, et al. Flame retardancy of thermoplastics polyurethanes. Polym Degrad Stab. 2012;97(12):2524–30.

    Google Scholar 

  2. Reddy KR, Lee KP, Gopalan AI. Novel electrically conductive and ferromagnetic composites of poly(aniline-co-minonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. J Appl Polym Sci. 2007;106(2):1181–91.

    CAS  Google Scholar 

  3. Reddy KR, Lee KP, Lee Y, et al. Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett. 2008;62(12–13):1815–8.

    CAS  Google Scholar 

  4. Najafi M, Ansari R, Darvizeh A. Effect of cryogenic aging on nanophased fiber metal laminates and glass/epoxy composites. Polym Compos. 2019;40(6):2523–33.

    CAS  Google Scholar 

  5. Reddy KR, Lee KP, Gopalan AI. Self-assembly directed synthesis of poly(ortho-toluidine)-metal(gold and palladium) composite nanospheres. J Nanosci Nanotechnol. 2007;7(9):3117–25.

    CAS  PubMed  Google Scholar 

  6. Jiao C, Zhao X, Song W, et al. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim. 2015;120(2):1173–81.

    CAS  Google Scholar 

  7. Herrera M, Matuschek G, Kettrup A. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym Degrad Stab. 2002;78(2):323–31.

    CAS  Google Scholar 

  8. Naik AD, Gaëlle F, Samyn F, et al. Outlining the mechanism of flame retardancy in polyamide 66 blended with melamine-poly(zinc phosphate). Fire Saf J. 2014;70:46–60.

    CAS  Google Scholar 

  9. Devedjiev I, Borissov G, Ganev V. Interaction between hypophosphorous acid salts and isocyanates and possibilities of using them as flame retardants for rigid polyurethane foams. Eur Polym J. 1985;21(2):155–7.

    CAS  Google Scholar 

  10. Chen X, Jiao C, Zhang J. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J Therm Anal Calorim. 2011;104(3):1037–43.

    CAS  Google Scholar 

  11. Novoselov KS. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.

    CAS  PubMed  Google Scholar 

  12. Lonkar SP, Deshmukh YS, Abdala AA. Recent advances in chemical modifications of graphene. Nano Res. 2015;8(4):1039–74.

    CAS  Google Scholar 

  13. Son DR, Raghu AV, Reddy KR, et al. Compatibility of thermally reduced graphene with polyesters. J Macromol Sci Part B. 2016;55(11):1099–110.

    CAS  Google Scholar 

  14. Hassan M, Reddy KR, Haque E, et al. Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol. 2014;98:1–8.

    CAS  Google Scholar 

  15. Seol JH, Jo I, Moore AL, et al. Two-dimensional phonon transport in supported graphene. Science. 2010;328(5975):213–6.

    CAS  PubMed  Google Scholar 

  16. Geim AK, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6:183–91.

    CAS  PubMed  Google Scholar 

  17. Shi Y, Li LJ. Chemically modified graphene: flame retardant or fuel for combustion? J Mater Chem. 2011;21:3277.

    CAS  Google Scholar 

  18. Han Y, Wu Y, Shen M, et al. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci. 2013;48(12):4214–22.

    CAS  Google Scholar 

  19. Liang J, Huang Y, Zhang L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Func Mater. 2009;19(14):2297–302.

    CAS  Google Scholar 

  20. Sang B, Li ZW, Li XH, et al. Graphene-based flame retardants: a review. J Mater Sci. 2016;51(18):8271–95.

    CAS  Google Scholar 

  21. Han SJ, Lee HI, Jeong HM, et al. Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci Part B. 2014;53(7):1193–204.

    CAS  Google Scholar 

  22. Lee YR, Kim SC, Lee HI, et al. Graphite oxides as effective fire retardants of epoxy resin. Macromol Res. 2011;19(1):66–71.

    CAS  Google Scholar 

  23. Gavgani JN, Adelnia H, Gudarzi MM. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci. 2014;49(1):243–54.

    CAS  Google Scholar 

  24. Han Z, Wang Y, Dong W, et al. Enhanced fire retardancy of polyethylene/alumina trihydrate composites by graphene nanoplatelets. Mater Lett. 2014;128:275–8.

    CAS  Google Scholar 

  25. Huang G, Liang H, Wang Y, et al. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol). Mater Chem Phys. 2012;132(2–3):520–8.

    CAS  Google Scholar 

  26. Pan Y, Hong N, Zhan J, et al. Effect of graphene on the fire and mechanical performances of glass fiber-reinforced polyamide 6 composites containing aluminum hypophosphite. J Macromol Sci Part D Rev Polym Process. 2014;53(14):1467–75.

    CAS  Google Scholar 

  27. Cao Y, Feng J, Wu P. Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends. J Mater Chem. 2012;22(30):14997.

    CAS  Google Scholar 

  28. Hu H, Wang X, Wang J, et al. Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett. 2010;484(4–6):247–53.

    CAS  Google Scholar 

  29. Hong N, Song L, Hull TR, et al. Facile preparation of graphene supported Co3O4 and NiO for reducing fire hazards of polyamide 6 composites. Mater Chem Phys. 2013;142(2–3):531–8.

    CAS  Google Scholar 

  30. Wang X, Xing W, Feng X, et al. The effect of metal oxide decorated graphene hybrids on the improved thermal stability and the reduced smoke toxicity in epoxy resins. Chem Eng J. 2014;250:214–21.

    CAS  Google Scholar 

  31. Feng X, Xing W, Song L, et al. TiO2 loaded on graphene nanosheet as reinforcer and its effect on the thermal behaviors of poly(vinyl chloride) composites. Chem Eng J. 2015;260:524–31.

    CAS  Google Scholar 

  32. Choi SH, Kim DH, Raghu AV, et al. Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B. 2012;51(1):197–207.

    CAS  Google Scholar 

  33. Li D, Müller MB, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3(2):101–5.

    CAS  PubMed  Google Scholar 

  34. Poonoosamy J, Brandt F, Stekiel M. Zr-containing layered double hydroxides: synthesis, characterization, and evaluation of thermodynamic properties. Appl Clay Sci. 2018;151:54–65.

    CAS  Google Scholar 

  35. Kuila T, Acharya H, Srivastava S. Effect of vinyl acetate content on the mechanical and thermal properties of ethylene vinyl acetate/MgAl layered double hydroxide nanocomposites. J Appl Polym Sci. 2008;108:1329–35.

    CAS  Google Scholar 

  36. Conterosito E, Gianotti V, Palin L. Facile preparation methods of hydrotalcite layered materials and their structural characterization by combined techniques. Inorg Chim Acta. 2018;470:36–50.

    CAS  Google Scholar 

  37. Reddy KR, Karthik KV, Prasad SBB, et al. Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron. 2016;120:169–74.

    CAS  Google Scholar 

  38. Reddy KR, Sin BC, Ryu KS, et al. Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met. 2009;159(7–8):595–603.

    CAS  Google Scholar 

  39. Kakarla RR, Han MJ, Lee Y, et al. Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci Part A Polym Chem. 2010;48(7):1477–84.

    Google Scholar 

  40. Manzi-Nshuti C, Songtipya P, Manias E, et al. Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer. 2009;50(15):3564–74.

    CAS  Google Scholar 

  41. Zhang Q, Shi JL, et al. Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium–sulfur batteries. Carbon. 2015;92:96–105.

    Google Scholar 

  42. Triantafyllidis KS, Peleka EN, Komvokis VG, et al. Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents. J Colloid Interface Sci. 2010;342(2):427–36.

    CAS  PubMed  Google Scholar 

  43. Kloprogge JT, Wharton D, Hickey L, et al. Infrared and Raman study of interlayer anions CO32−, NO3, SO42−and ClO4 in Mg/Al-hydrotalcite. Am Miner. 2002;87(5–6):623–9.

    CAS  Google Scholar 

  44. Liu Z, Ma R, Osada M, et al. Synthesis, anion exchange, and delamination of Co/Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc. 2006;128(14):4872–80.

    CAS  PubMed  Google Scholar 

  45. Mullica DF, Sappenfield EL, Grossie DA. Crystal structure of neodymium and gadolinium dihydroxy-nitrate, Ln(OH)2NO3. J Solid State Chem. 1986;63(2):231–6.

    CAS  Google Scholar 

  46. Rojas R, Barriga C, et al. Intercalation of vanadate in Ni, Zn layered hydroxyacetates. J Solid State Chem. 2004;177(10):3392–401.

    CAS  Google Scholar 

  47. Zou H, Sun J, Gu XY, Jiang P, Liu XS, Zhang S. Preparation and characterization of flame retardant and low smoke releasing oil-resistant EVA/NBR blends. Chin J Polym Sci. 2015;33(4):554–63.

    CAS  Google Scholar 

  48. Liu L, Hu J, Zhuo J, et al. Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites. Polym Degrad Stab. 2014;104:87–94.

    CAS  Google Scholar 

  49. Lin M, Li B, Li Q, et al. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polym Sci. 2011;121(4):1951–60.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51572138), the Key R & D Project of Shandong Province (Nos. 2019GSF109001, 2019CSF109080 and 2017GSF217013), the Shandong Provincial Natural Science Foundation, China (No. ZR2018BB072), the Original Innovation Project of Qingdao City (No. 19-6-2-23-cg), the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Nos. 2018-K09 and 2018-K43), Key Laboratory of Coastal Environmental Processes and Ecological Remediation, YICCAS (No. 2018KFJJ02) and Opening Project of Shandong Ecochemical Engineering Collaborative Innovation Center (No. XTCXQN02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Qian or Long Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Han, H., Li, L. et al. Combustion behavior and thermal stability of TPU composites based on layered yttrium hydroxides and graphene oxide. J Therm Anal Calorim 142, 409–423 (2020). https://doi.org/10.1007/s10973-019-09181-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09181-w

Keywords

Navigation