Skip to main content
Log in

Influences of electrical MHD and Hall current on squeezing nanofluid flow inside rotating porous plates with viscous and joule dissipation effects

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanofluids have the ability to flow smoothly in micro-cavities in addition with scattering of the nanoparticles. Because of the good convection between nanoparticles and the base fluid, nanofluids can achieve a good thermal conductivity. The main advantages of adding nanosize particles with base fluid are to improve the ability of storing heat, effective surface area, heat transmission, collisions and interaction among the nanoparticles. The main aim of this research work is to examine the steady and incompressible nanofluid flow between parallel rotating plates. Viscose and joule dissipation effects are taken into account. To our knowledge, impact of electrical MHD and Hall effect with Cattaneo–Christov heat flux on the squeezing 3-D flow nanofluid between parallel rotating plates are not examined yet. Heat in the form of Cattaneo–Christov heat flux is applied. We used similarity transformations to transform the primary equations to a system of ordinary differential equations (ODEs). These ODEs are then solved through the standard procedure of homotopy analysis technique. The skin friction and Nusselt number are numerically tabulated under the influence of some focused parameters. The effects produced by different parameters on the velocity (components) and temperature profiles are graphically depicted and explained in a bit detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(A_{1},A_{2},A_{3},A_{4}\) :

Nanofluid constants

\(\hbox{Nu}_{{\mathrm{x}}}\) :

Local Nusselt number

\(\hbox{Re}_{{\mathrm{x}}}\) :

Local Reynolds number \(\delta\) Suction parameter

\(\gamma\) :

Thermal relaxation parameter

\(C_{{\mathrm{f}}}\) :

Skin friction coefficient

\(\rho\) :

Density (\(\hbox{kg}\,\hbox{m}^{-3}\))

\(C_{{\mathrm{p}}}\) :

Specific heat (\(\hbox{J}\,{\hbox{kg}^{-1}\,\hbox{K}^{-1}}\))

\(f, g, \theta\) :

Dimensionless velocities

\(\sigma _{{\mathrm{nf}}}\) :

Electrical conductivity of nanofluid

\(k^{\star }\) :

Mean absorption coefficient

\(k_{{\mathrm{nf}}}\) :

Nanofluid thermal conductivity

\(E_{{\mathrm{I}}}\) :

Electric field parameter

\(\alpha\) :

Rotation parameter

\(\kappa\) :

Vortex viscosity

\(\lambda\) :

Heat flux relaxation

\(\mu _{{\mathrm{f}}}\) :

Base fluid dynamic viscosity

\(\infty\) :

Condition at infinity

xy and z :

Coordinates m

B :

Magnetic parameter T

\(P_{{\mathrm{r}}}\) :

Prandtl number

\(\beta\) :

Squeezing parameter

\(U_{{\mathrm{w}}}\) :

Stretching velocity (\(\hbox{m}\,\hbox{s}^{-1}\))

T :

Fluid temperature (K)

\(\mu\) :

Dynamic viscosity (mPa)

E :

Electric field (\(\hbox{N}\,\hbox{C}^{-1}\))

t :

Time (s)

M :

Magnetic parameter Teslas

\(E_{{\mathrm{c}}}\) :

Eckert numbers

\(k_{{\mathrm{f}}}\) :

Base fluid thermal conductivity

m :

Hall parameters

\(\varphi\) :

volume fraction

\(\zeta\) :

Independent variable

S :

Suction injection parameter

\(\mu _{{\mathrm{nf}}}\) :

Nanofluid fluid dynamic viscosity

0:

Reference condition

\(B_{0}\) :

Magnetic field strength

References

  1. Siddiqui AM, Irum S, Ansari AR. Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method. Math Model Anal. 2008;13(4):565–76.

    Article  Google Scholar 

  2. Mustafa M, Hayat T, Obaidat S. On heat and mass transfer in the unsteady squeezing flow between parallel plates. Meccanica. 2012;47(7):1581–9.

    Article  Google Scholar 

  3. Joneidi A, Domairry G, Babaelahi M. Effect of mass transfer on a flow in the magnetohydrodynamic squeeze film between two parallel disks with one porous disk. Chem Eng Commun. 2010;198(3):299–311.

    Article  Google Scholar 

  4. Hayat T, Yousaf A, Mustafa M, Asghar S. Influence of heat transfer in the squeezing flow between parallel disks. Chem Eng Commun. 2012;199(8):1044–62.

    Article  CAS  Google Scholar 

  5. Khan U, Ahmed N, Khan SI, Zaidi ZA, Xiao-Jun Y, Mohyud-Din ST. On unsteady two-dimensional and axisymmetric squeezing flow between parallel plates. Alex Eng J. 2014;53(2):463–8.

    Article  Google Scholar 

  6. Khan U, Ahmed N, Zaidi Z, Asadullah M, Mohyud-Din ST. MHD squeezing flow between two infinite plates. Ain Shams Eng J. 2014;5(1):187–92.

    Article  Google Scholar 

  7. Khan SI, Ahmed N, Khan U, Jan SU, Mohyud-Din S. Heat transfer analysis for squeezing flow between parallel disks. J Egypt Math Soc. 2015;23(2):445–50.

    Article  Google Scholar 

  8. Stefan J. Versuche iiber die scheinbare adhesion. K. Akad. Wissenschaften, Math. Naturwissenchaftliche Klasse, Wien, Sitzungsberichte. 1874;69(1874):713.

    Google Scholar 

  9. Chamkha AJ. Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink. Int J Eng Sci. 2000;38(15):1699–712.

    Article  Google Scholar 

  10. Israel-Cookey C, Ogulu A, Omubo-Pepple V. Influence of viscous dissipation and radiation on unsteady MHD free-convection flow past an infinite heated vertical plate in a porous medium with time-dependent suction. Int J Heat Mass Transf. 2003;46(13):2305–11.

    Article  Google Scholar 

  11. Mbeledogu I, Ogulu A. Heat and mass transfer of an unsteady MHD natural convection flow of a rotating fluid past a vertical porous flat plate in the presence of radiative heat transfer. Int J Heat Mass Transf. 2007;50(9–10):1902–8.

    Article  Google Scholar 

  12. Jha BK. MHD free-convection and mass-transform flow through a porous medium. Astrophys Space Sci. 1991;175(2):283–9.

    Article  Google Scholar 

  13. Agrawal H, Ram P, Singh V. Effects of hall current on the hydromagnetic free convection with mass transfer in a rotating fluid. Astrophys Space Sci. 1984;100(1–2):279–86.

    Article  Google Scholar 

  14. Singh A, Sacheti NC. Finite difference analysis of unsteady hydromagnetic free-convection flow with constant heat flux. Astrophys Space Sci. 1988;150(2):303–8.

    Article  Google Scholar 

  15. Animasaun L, Koriko OK, Adegbie KS, Babatunde HA, Ibraheem RO, Sandeep N, Mahanthesh B. Comparative analysis between 36 nm and 47 nm alumina-water nanofluid flows in the presence of Hall effect. J Therm Anal Calorim. 2019;135:87386.

    Article  Google Scholar 

  16. Chamkha AJ. Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. Int J Eng Sci. 2004;42(2):217–30.

    Article  Google Scholar 

  17. Sheikholeslami M, Ganji D. Heat transfer of cu–water nanofluid flow between parallel plates. Powder Technol. 2013;235:873–9.

    Article  CAS  Google Scholar 

  18. Tsou F, Sparrow EM, Goldstein RJ. Flow and heat transfer in the boundary layer on a continuous moving surface. Int J Heat Mass Transf. 1967;10(2):219–35.

    Article  CAS  Google Scholar 

  19. Crane LJ. Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP. 1970;21(4):645–7.

    Article  Google Scholar 

  20. Subramanian R, Senthil Kumar A, Vinayagar K, Muthusamy C. Experimental analyses on heat transfer performance of TiO2water nanofluid in double-pipe counter-flow heat exchanger for various flow regimes. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08887-1.

    Article  Google Scholar 

  21. Gupta P, Gupta A. Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng. 1977;55(6):744–6.

    Article  Google Scholar 

  22. Khan W, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf. 2010;53(11–12):2477–83.

    Article  CAS  Google Scholar 

  23. Abolbashari MH, Freidoonimehr N, Nazari F, Rashidi MM. Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol. 2014;267:256–67.

    Article  CAS  Google Scholar 

  24. Mishra S, Bhatti M. Simultaneous effects of chemical reaction and ohmic heating with heat and mass transfer over a stretching surface: a numerical study. Chin J Chem Eng. 2017;25(9):1137–42.

    Article  CAS  Google Scholar 

  25. Domairry G, Aziz A. Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method. Math Prob Eng. 2009;2009:1–19.

    Article  Google Scholar 

  26. Hamza E. The magnetohydrodynamic effects on a fluid film squeezed between two rotating surfaces. J Phys D Appl Phys. 1991;24(4):547.

    Article  Google Scholar 

  27. Hamza E, MacDonald D. A fluid film squeezed between two parallel plane surfaces. J Fluid Mech. 1981;109:147–60.

    Article  CAS  Google Scholar 

  28. Sha Z, Dawar A, Alzahrani EO, Kumam P, Khan AJ, Islam S. Hall effect on couple stress 3D nanofluid flow over an exponentially stretched surface with cattaneo christov heat flux model. IEEE Access. 2019;7:64844–55.

    Article  Google Scholar 

  29. Vo DD, Shah Z, Sheikholeslami M, Shafee A, Nguyen TK. Numerical investigation of MHD nanomaterial convective migration and heat transfer within a sinusoidal porous cavity. Phys Scr. 2019;94(11):115225.

    Article  CAS  Google Scholar 

  30. Shah Z, Dawar A, Kumam P, Khan W, Islam S. Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk. Appl Sci. 2019;9(8):1533.

    Article  CAS  Google Scholar 

  31. Ameen I, Shah Z, Islam S, Nasir S, Khan W, Kumam P, Thounthong P. Hall and ion-slip effect on cnts nanofluid over a porous extending surface through heat generation and absorption. Entropy. 2019;21(8):801.

    Article  Google Scholar 

  32. Rashidi MM, Shahmohamadi H, Dinarvand S. Analytic approximate solutions for unsteady two-dimensional and axisymmetric squeezing flows between parallel plates. Math Prob Eng. 2008;2008:1–12.

    Article  Google Scholar 

  33. Ahmad Farooq A, Shah Z, Alzahrani EO. Heat transfer analysis of a magneto-bio-fluid transport with variable thermal viscosity through a vertical ciliated channel. Symmetry. 2019;11(10):1240.

    Article  Google Scholar 

  34. Alsaadi FE, Ullah I, Hayat T, Alsaadi FE. Entropy generation in nonlinear mixed convective flow of nanofluid in porous space influenced by Arrhenius activation energy and thermal radiation. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08648-0.

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah under grant no. (RG-85-130-38). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahir Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, Z., Alzahrani, E.O., Alghamdi, W. et al. Influences of electrical MHD and Hall current on squeezing nanofluid flow inside rotating porous plates with viscous and joule dissipation effects. J Therm Anal Calorim 140, 1215–1227 (2020). https://doi.org/10.1007/s10973-019-09176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09176-7

Keywords

Navigation