Skip to main content
Log in

Numerical study of flow around two spheres filled by a phase-change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A numerical simulation using the commercial software “COMSOL Multiphysics” was carried out to study the flow around two fixed spheres filled with a phase-change material (PCM). This work focuses essentially on the process of fusion of the two interactive spheres located at different distances and on the heat exchange with the air flowing around two capsules. Two dispositions were examined: the first for two aligned capsules, while the second for two nonaligned ones. The separation distance d between the two capsules ranged from \(2R\) to \(8R\). The influence of the inter-capsule distance on the thermal behavior of the system was demonstrated. The results show that the interaction rate between the capsules decreases as a function of the separation distance and that there is an optimum distance d from which each capsule behaves independently of the other. This distance is equal to \(d = 6R\) for the first case and \(d = 3R\) for the second case. It was noted that the local exchange coefficients’ variation on the surfaces was influenced by the effect of the distance between the two capsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

B :

Source term

Cp :

Specific heat capacity (J kg−1 K−1)

g :

Gravitational constant (m s−1)

H :

Liquid fraction

k :

Thermal conductivity (W  m−1 K−1)

Lm:

Melting heat (J kg−1)

D :

External capsule diameter (m)

d :

Distance of separation between the capsules according to the vertical axis (m)

d′:

Distance of offset between the capsules with respect to the axis of the channel (m)

t :

Time (s)

T :

Temperature (K)

u, v :

Velocities (m s1)

x; y :

Coordinates (m)

p :

Pressure (N m−2)

PCM:

Phase change material

h :

Exchange coefficient (Wm−2 K−1)

a:

Air

e:

Entry

l:

Liquid

s:

Solid

m:

Melting

eq:

Equivalent

0:

Reference

β :

Volumetric expansion coefficient (K−1)

Q :

Heat flux (W m−2)

ρ :

Density (kg m-3)

η :

Dynamic viscosity (Pa s)

θ :

Angle

References

  1. Roy SK, Sengupta S. Gravity-assisted melting in a spherical enclosure: effects of natural convection. Int J Heat Mass Transf. 1990;33:1135–47.

    Article  CAS  Google Scholar 

  2. Bahrami PA. Natural melting within a spherical shell. Ames Research Center, Moffett Field, California, NASA Technical Memorandum, 102822 (1990).

  3. Tan F, Hosseinizadeh SF, Khodadadi JM, Fan L. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf. 2009;52:3464–72.

    Article  CAS  Google Scholar 

  4. Sattari H, Mohebbi A, Afsahi MM, Yancheshme AA. CFD simulation of meting process of phase change materials (PCMs) in a spherical capsule. Int J Refrig. 2017;73:209–18.

    Article  CAS  Google Scholar 

  5. Chen RC, Lu YN. The flow characteristics of an interactive particle at low Reynolds numbers. Int J Multiphase Flow. 1999;25:1645–55.

    Article  CAS  Google Scholar 

  6. Chen RC, Wu JL. The flow characteristics between two interactive spheres. Chem Eng Sci. 2000;55:1143–58.

    Article  CAS  Google Scholar 

  7. Tsuji T, Narutomi R, Yokomine T, Ebara S, Shimizu A. Unsteady three dimensional simulation of interactions between flow and two particles. Int J Multiphase Flow. 2003;29:1431–50.

    Article  CAS  Google Scholar 

  8. Schouveiler L, Brydon A, Leweke T, Thompson MC. Interactions of the wakes of two spheres placed side by side. Eur J Mech B Fluid. 2004;23:137–45.

    Article  Google Scholar 

  9. Kim I, Elghobashi S, Sirignano W. Three-dimensional flow over two spheres placed side-by-side. J Fluid Mech. 1993;246:465–88.

    Article  CAS  Google Scholar 

  10. Zhu C, Liang S, Fan L. Particle wake effects on the drag force of an interactive particle. Int J Muhiphase Flow. 1994;20(1):117–29.

    Article  CAS  Google Scholar 

  11. Hassanzadeh R, Sahin B, Ozgoren M. Large eddy simulation of flow around two side-by-side spheres. J Mech Sci Technol. 2013;27(7):1971–9.

    Article  Google Scholar 

  12. Prahl L, Hölzer A, Arlov D. On the interaction between two fixed spherical particles. Int J Multiphase Flow. 2007;33:707–25.

    Article  CAS  Google Scholar 

  13. Jadoon A, Prahl L, Revstedt J. Dynamic interaction of fixed dual spheres for several configurations and inflow conditions. Eur J Mech B Fluid. 2010;29:43–52.

    Article  Google Scholar 

  14. Pinar E, Sahin B, Ozgoren M, Akilli H. Experimental study of flow structures around side-by-side spheres. Ind Eng Chem Res. 2013;52:14492–503.

    Article  CAS  Google Scholar 

  15. Li S, Yang J, Wang Q. Large eddy simulation of flow and heat transfer past two side-by-side spheres. Appl Therm Eng. 2017;121:810–9.

    Article  Google Scholar 

  16. Elomari K, Dumas JP. Crystallization of supercooled spherical nodules in a flow. Int J Therm Sci. 2004;43:1171–80.

    Article  CAS  Google Scholar 

  17. Dhifaoui B, et al. Etude expérimentale du comportement d’un lit poreux soumis à un flux de chauffage pariétal et parcouru par un écoulement d’air—applications: stockage thermique parchaleur sensible et échangeurs de chaleur. Ph.D. thesis, Université El Manar, Tunis (2007).

  18. foudhil W, et al. Simulation numérique du transfert thermique et du stockage par chaleur sensible et latente en milieux poreux. PhD thesis, Université El Manar, Tunis (2012).

  19. Benmansour A, Hamdan MA, Bengeuddach A. Experimental and numerical investigation of solid particles thermal energy storage unit. Appl Therm Eng. 2006;26:513–8.

    Article  CAS  Google Scholar 

  20. Liao Z, Xu C, Ren Y, Gao F, Ju X, Du X. A novel effective thermal conductivity correlation of the PCM melting in spherical PCM encapsulation for the packed bed TES system. Appl Therm Eng. 2018;135:116–22.

    Article  CAS  Google Scholar 

  21. Gharbi S, Harmand S, Ben Jabrallah S. Experimental study of the cooling performance of phase change material with discrete heat sources continuous and intermittent regimes. Appl Therm Eng. 2017;111:103–11.

    Article  CAS  Google Scholar 

  22. Shili H, Fahem K, Harmand S, Ben Jabrallah S. The effect of water’s presence around the phase change material. Therm Sci. 2019;00:301.

    Article  Google Scholar 

  23. Shili H, Fahem K, Harmand S, Ben Jabrallah S. Thermal control of electronic components using a liquid around the phase change material. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08877-3.

    Article  Google Scholar 

  24. COMSOL Multiphysics, version 3.4, www.comsol.com.

  25. Van Den Br Brink GJ, Van Galen E. Thermal energy storage system using organic phase change materials with improved thermal conductivity for storage temperatures between 35 and 120°C. Technical report. Directorate-General for Science, Research and Development (1984).

  26. Van Buren PD, Viskanta R. Interferometric measurement of heat transfer during melting from a vertical surface. Int J Heat and Mass Transf. 1980;23:56–571.

    Google Scholar 

  27. Ogoh W, Groulx D. Stefan’s problem: validation of a one-dimensional solid–liquid phase change heat transfer process. In: Excerpt from the proceedings of the COMSOL conference Boston (2010).

  28. Heat Transfer Module, COMSOL MULTIPHYSICS (2008).

  29. Van Den Brink GJ, Van Galen E. Thermal energy storage system using organic phase change materials with improved thermal conductivity for storage temperature between 35–120°C. Brussels, Commission of the European Community (1984).

  30. Van Buren PD, et al. Interferometric measurement of heat transfer during melting from a vertical surface. Int J Heat Mass Transf. 1980;23:56–571.

    Google Scholar 

  31. Kadri S, et al. Large-scale experimental study of a phase change material: shape identification for the solid–liquid interface. Int J Thermophys. 2015;36:2897–915.

    Article  CAS  Google Scholar 

  32. Younsi Z. Transferts thermiques entre lame d’air et matériaux à changement de phase. Application à la gestion optimale des performances d’un composant solaire passif. Ph.D. thesis, Université—Artois, FR (2008).

  33. Ettouney H, et al. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads. Energy Convers Manag. 2006;47:211–28.

    Article  CAS  Google Scholar 

  34. Incropera FP, DeWitt DP. Fundamentals of heat and mass transfer. 4th ed. New York: Wiley; 1996. p. 374.

    Google Scholar 

  35. Song D, Gupta RK, Chhabra RP. Heat transfer to a sphere in tube flow of power-law liquids. Int J Heat Mass Transf. 2012;55:2110–21.

    Article  Google Scholar 

  36. Song D, Gupta RK, Chhabra RP. Effect of blockage on heat transfer from a sphere in power-law fluids. Ind Eng Chem Res. 2010;49:3849–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Ghrissi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghrissi, F., Dhifaoui, B., Harmand, S. et al. Numerical study of flow around two spheres filled by a phase-change material. J Therm Anal Calorim 140, 1191–1203 (2020). https://doi.org/10.1007/s10973-019-09167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09167-8

Keywords

Navigation