Skip to main content
Log in

Melting of 1-octadecene inside the pores of open-morphology silica gel: thermodynamic model and experimental studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Melting of crystalline compounds inside the nanopores of open-morphology porous systems was studied on a model system, consisted of 1-octadecene and silica gels with different pore sizes, by means of thermogravimetry, differential scanning calorimetry and powder X-ray diffraction. The parameters of silica gels porous structure (surface area, pore size and volume) were calculated using N2 adsorption data. To describe the experimental results, a new thermodynamic model of crystallites melting inside the nanopores of irregular shape was established. This model allows an analytical prediction for the shift of phase transition temperature and melting enthalpy (latent heat of melting) due to the surface tension effects. To a first approximation, both parameters must linearly depend on the specific ratio of the total surface of pores to their total volume, and experimental studies have mostly confirmed this result for the melting of 1-octadecene confined inside the pores of a wide range of various silicas (with the pores of different sizes and geometry).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huber P. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. J Phys Condens Matter. 2015;27:103102–43.

    Article  Google Scholar 

  2. Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak MJP. Effects of confinement on freezing and melting. J Phys Condens Matter. 2006;18:15–68.

    Article  Google Scholar 

  3. Hoyt JJ. Effect of stress on melting and freezing in nanopores. Phys Rev Lett. 2006;96:045702–4.

    Article  CAS  Google Scholar 

  4. Fakoya MF, Shah SN. Emergence of nanotechnology in the oil and gas industry: emphasis on the application of silica nanoparticles. Petroleum. 2017;3:391–405.

    Article  Google Scholar 

  5. Webber JBW, Dore JC. Neutron diffraction cryoporometry—a measurement technique for studying mesoporous materials and the phases of contained liquids and their crystalline forms. Nucl Instrum Methods Phys Res A. 2008;586:356–66.

    Article  CAS  Google Scholar 

  6. Wang D, Sui J, Qi D, Deng S, Wei Y, Wang X, Lan X. Phase transition of docosane in nanopores. J Therm Anal Calorim. 2019;135:2869–77.

    Article  CAS  Google Scholar 

  7. Charmas B, Skubiszewska-Zięba J. Application of differential scanning calorimetry to study porous structure of hydrothermally modified silicas. J Therm Anal Calorim. 2017;129:23–32.

    Article  CAS  Google Scholar 

  8. Yan X, Wang TB, Pei HR, Wang LP, Lan XZ. Phase behavior of dodecane–tridecane mixtures confined in SBA-15. J Therm Anal Calorim. 2013;113:1297–302.

    Article  CAS  Google Scholar 

  9. Zhai M, Zhang S, Sui J, Tian F, Lan XZ. Solid–solid phase transition of tris (hydroxymethyl) aminomethane in nanopores of silica gel and porous glass for thermal energy storage. J Therm Anal Calorim. 2017;129:957–64.

    Article  CAS  Google Scholar 

  10. Jiang K, Xie B, Fu D, Luo F, Liu G, Su Y, Wang D. Solid–solid phase transition of n-Alkanes in multiple nanoscale confinement. J Phys Chem B. 2009;114:1388–92.

    Article  Google Scholar 

  11. Alekseev OM, Alekseev SO, Zabashta YF, Lazarenko MM, Hnatiuk KI, Lazarenko MV, Dinzhos RV, Simeonov MS. Influence of open-porous system on the solid-state phase transition in 1-octadecene. Ukr J Phys. 2019;64:340–340.

    Google Scholar 

  12. Jiang Q, Ward MD. Crystallization under nanoscale confinement. Chem Soc Rev. 2014;43:2066–79.

    Article  CAS  Google Scholar 

  13. Sґliwinґska-Bartkowiak M, Sterczynґska A, Long Y, Gubbins KE. Influence of microroughness on the wetting properties of nanoporous silica matrices. Mol Phys. 2014;112:2365–71.

    Article  Google Scholar 

  14. Grzabka-Zasadzinґska A, Amietszajew T, Borysiak S. Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids. J Therm Anal Calorim. 2017;130:1–12.

    Article  Google Scholar 

  15. Amanuel S, Bauer H, Bonventre P, Lasher D. Nonfreezing interfacial layers of cyclohexane in nanoporous silica. J Phys Chem C. 2009;113:18983–6.

    Article  CAS  Google Scholar 

  16. Krycka KL, Dura JA, Langston LJ, Burba CM. Nanoconfinement-induced phase segregation of binary benzene–cyclohexane solutions within a chemically inert matrix. J Phys Chem C. 2018;122:7676–84.

    Article  CAS  Google Scholar 

  17. Mei QS, Lu K. Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog Mater Sci. 2007;52:1175–262.

    Article  CAS  Google Scholar 

  18. Thomson W. On the equilibrium of vapour at a curved surface of liquid. Proc R Soc Edinb. 1872;7:63–8.

    Article  Google Scholar 

  19. Jackson CL, McKenna GB. The melting behavior of organic materials confined in porous solids. J Chem Phys. 1990;93:9002–11.

    Article  CAS  Google Scholar 

  20. Bulavin LA, Alekseev OM, Zabashta YF, Lazarenko MM. Melting thermodynamics of nanocrystals. J Phys Stud. 2018;22:2601–5.

    Article  Google Scholar 

  21. Balescu R. Equilibrium and nonequilibrium statistical mechanics. Hoboken: Blackwell, Wiley; 1975.

    Google Scholar 

  22. Bulavin LA, Alekseev OM, Zabashta YF, Lazarenko MM. Phase equilibrium, thermodynamic limit, and melting temperature in nanocrystals. Ukr J Phys. 2018;63:1036–1036.

    Article  Google Scholar 

  23. Alekseev OM, Alekseev SO, Bulavin LA, Lazarenko MM, Maiko OM. Phase transitions in chain molecular polycrystals of 1-octadecene. Ukr J Phys. 2008;53:882–7.

    CAS  Google Scholar 

  24. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1984;57:603–19.

    Article  Google Scholar 

  25. Pichkur V, Lazarenko M, Alekseev O, Kovbasa V, Lazarenko M. Thermogravimetric research of the extruded and native types of starch. EEJET. 2015;1:52–6.

    Article  Google Scholar 

  26. Lazarenko MM, Alekseev AN, Alekseev SA, Grabovsky YE, Lazarenko MV, Hnatiuk KI. Structure and thermal motion of 1-octadecene, confined in the pores of porous silicon. Mol Cryst Liq Cryst. 2018;674:19–30.

    Article  CAS  Google Scholar 

  27. Huber P, Wallacher D, Albers J, Knorr K. Quenching of lamellar ordering in an n-alkane embedded in nanopores. EPL. 2004;65:351–7.

    Article  CAS  Google Scholar 

  28. Alekseev AN, Alekseev SA, Zabashta YF, Hnatiuk KI, Dinzhos RV, Lazarenko MM, Grabovskii YE, Bulavin LA. Two-dimensional ordered crystal structure formed by chain molecules in the pores of solid matrix. In: Fesenko O, Yatsenko L, editors. Nanocomposites, nanostructures, and their applications. Springer proceedings in physics, vol. 221. Berlin: Springer; 2018. p. 387–95.

    Chapter  Google Scholar 

  29. Tkachev SY, Alekseev OM, Lazarenko MM, Lazarenko MV, Kovalov KM, Bokhvan SI, Grabovskii YE, Hoshylyk NV. Topological solitons in branched aliphatic molecules. Mol Cryst Liq Cryst. 2018;665:166–80.

    Article  CAS  Google Scholar 

  30. Dinzhos RV, Privalko VP, Privalko EG. Enthalpy relaxation in the cooling/heating cycles of polyamide 6/organoclay nanocomposites. I. Nonisothermal crystallization. J Macromol Sci Phys B. 2005;44:421–30.

    Article  CAS  Google Scholar 

  31. Privalko VP, Dinzhos RV, Privalko EG. Enthalpy relaxation in the cooling/heating cycles of polyamide 6/organoclay nanocomposites. II. Melting behavior. J Macromol Sci Phys B. 2005;44:431–43.

    Article  CAS  Google Scholar 

  32. Yaws CL. Thermophysical properties of chemicals and hydrocarbons. Chemical, petrochemical & process. Norwich: William Andrew; 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Hnatiuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hnatiuk, K.I., Dinzhos, R.V., Simeonov, M.S. et al. Melting of 1-octadecene inside the pores of open-morphology silica gel: thermodynamic model and experimental studies. J Therm Anal Calorim 141, 1243–1250 (2020). https://doi.org/10.1007/s10973-019-09133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09133-4

Keywords

Navigation