Skip to main content
Log in

Measurements of specific heat capacity of common building materials at elevated temperatures: a comparison of DSC and HDA

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate how the specific heat capacity (cp) value of a material changes with respect to temperature and heating rate of that material. In-depth knowledge in the variation of cp will provide a better knowledge of the thermo-physical properties of these materials and will increase the capabilities and fidelity of computational fluid dynamics (CFD)-based fire modelling. The models and simulations are reliant on input data gained through experimentation and this allows for the present study to provide such input data and trends, which are useful in understanding how fires respond in different situations. The value of cp in relation to the rate of temperature change has been measured using differential scanning calorimetry (DSC) and hot disk analysis (HDA). This study encapsulates the determination of cp values, trends and equations for poly(methyl methacrylate), pinewood, pinewood char, and two fabrics: cotton and wool. The cp values were found to increase with the sample temperature and for the two fabrics; they vary with the change in heating rate. The derived equations show that cp values from DSC and HDA are comparable. To include these relationships in CFD-based fire models, a set of suggestions have been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

β s :

Heating rate (K min−1)

C :

Specific heat (J g−1 K−1)

c p :

Specific heat capacity (J g−1 K−1)

c p,a :

Apparent Specific heat capacity (J g−1 K−1)

c r :

Specific heat capacity of reference sample (J g−1 K−1)

\(\frac{{\text{d}H}}{{\text{d}t}}\) :

Heat flow to the sample (mW)

\(\frac{{\text{d}H_{\rm r} }}{{\text{d}t}}\) :

Heat flow to the reference material (mW)

H :

Enthalpy (J)

m :

Mass (g)

m o :

Sample mass (g)

m r :

Reference mass (g)

p :

Pressure constant

Q :

Heat flow (J)

ΔQ :

Change in heat flow (mW)

T :

Temperature (°C or K)

ΔT :

Change in temperature (°C or K)

References

  1. Drysdale D. An introduction to fire dynamics. Hoboken: John Wiley & Sons; 2011.

    Book  Google Scholar 

  2. McGrattan K, McDermott R, Weinschenk C, Overholt K, Hostikka S, Floyd J. Fire dynamics simulator (Sixth Edition) user’s guide. Gaithersburg: National Institute of Standards and Technology; 2015.

    Google Scholar 

  3. Abu-Bakar AS, Moinuddin KAM, editors. Effects of variation in heating rate, sample mass and nitrogen flow on chemical kinetics for pyrolysis. In: 18th Australasian fluid mechanics conference Launceston, Australia; 2012; Launceston, TAS.

  4. Kousksou T, Jamil A, El Omari K, Zeraouli Y, Le Guer Y. Effect of heating rate and sample geometry on the apparent specific heat capacity: DSC applications. Thermochim Acta. 2011;519(1–2):59–64. https://doi.org/10.1016/j.tca.2011.02.033.

    Article  Google Scholar 

  5. Abu-Bakar AS. Characterization of Fire Properties for Coupled Pyrolysis and Combustion Simulation and Their Optimised Use [PhD]. College of Engineering and Science: Victoria University; 2015.

  6. Linteris GT, Gewuerz L, McGrattan KB, Forney GP. Modeling solid sample burning with FDS. Nat Inst Stand Technol NISTIR. 2004;7178:36.

    Google Scholar 

  7. Czichos H, Saito T, Smith LE. Springer handbook of materials measurement methods. Berlin: Springer Science + Business Media; 2007.

    Google Scholar 

  8. Mettler-Toledo. Heat capacity determination at high temperatures by TGA/DSC Part 1: DSC standard procedures. Schwerzenbach, Switzerland; 2010.

  9. Goodrich TW. Thermophysical properties and microstructural changes of composite materials at elevated temperature. Blacksburg: Virginia Tech; 2009.

    Google Scholar 

  10. Kodur VKR, Harmathy TZ. Properties of building materials. In: DiNenno PJ, Drysdale D, Beyler CL, Walton WD, Custer RLP, Hall Jr JR, et al., editors. SFPE handbook of fire protection engineering. 3rd ed. Quincy: National Fire Protection Association; 2002. p. 155–81.

    Google Scholar 

  11. Hohne GWH, Hemminger WF, Flammersheim HJ. Differential scanning calorimetry. Berlin: Springer-Verlag; 2003.

    Book  Google Scholar 

  12. Abu-Bakar AS, Cran M, Moinuddin KAM. Experimental investigation of effects of variation in heating rate, temperature and heat flux on fire properties of a non-charring polymer. J Thermal Anal Calorim. 2019;137(2):447–59. https://doi.org/10.1007/s10973-018-7941-0.

    Article  CAS  Google Scholar 

  13. Abu-Bakar AS, Cran M, Wadhwani R, Moinuddin KAM. Characterisation of pyrolysis and combustion parameters of charring materials most frequently found in buildings. J Thermal Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08688-6.

    Article  Google Scholar 

  14. Thermtest I, inventor Thermtest Inc, assignee. Hot Disk Thermal Constants Analyser Instruction Manual. Canada; 2012.

  15. Mettler T, inventor DSC1 User’s Manual. Switzerland; 2011.

  16. Mettler-Toledo. DSC calibration, temperature and heat flow. Mettler-Toledo, Switzerland. 2018. https://www.mt.com/au/en/home/supportive_content/matchar_apps/MatChar_HB805.html. Accessed 14 Oct 2018.

  17. Shaw T, Carrol J. Application of baseline correction techniques to the “ratio method” of DSC specific heat determination. Int J Thermophys. 1998;19(6):1671–80. https://doi.org/10.1007/BF03344918.

    Article  CAS  Google Scholar 

  18. Milosavljevic I, Oja V, Suuberg EM. Thermal effects in cellulose pyrolysis: relationship to char formation processes. Ind Eng Chem Res. 1996;35(3):653–62. https://doi.org/10.1021/ie950438l.

    Article  CAS  Google Scholar 

  19. Shalaev EY, Steponkus PL. Correction of the sample weight in hermetically sealed DSC pans. Thermochim Acta. 2000;345(2):141–3. https://doi.org/10.1016/S0040-6031(99)00357-3.

    Article  CAS  Google Scholar 

  20. Rath J, Wolffinger MG, Steiner G, Krammer G, Barontini FC, Cozzani V. Heat of wood pyrolysis. Fuel. 2003;82(1):81–91. https://doi.org/10.1016/S0016-2361(02)00138-2.

    Article  Google Scholar 

  21. Rudtsch S. Uncertainty of heat capacity measurements with differential scanning calorimeters. Thermochim Acta. 2002;382(1–2):17–25. https://doi.org/10.1016/S0040-6031(01)00730-4.

    Article  CAS  Google Scholar 

  22. Strezov V, Patterson M, Zymla V, Fisher K, Evans TJ, Nelson PF. Fundamental aspects of biomass carbonisation. J Anal Appl Pyrol. 2007;79(1–2):91–100. https://doi.org/10.1016/j.jaap.2006.10.014.

    Article  CAS  Google Scholar 

  23. Dieck RH. Measurement uncertainty: methods and applications. ISA; 2007.

  24. Höhne G, Hemminger WF, Flammersheim H-J. Differential scanning calorimetry. Berlin: Springer Science & Business Media; 2013.

    Google Scholar 

  25. Gaur U, Sf Lau, Wunderlich BB, Wunderlich B. Heat capacity and other thermodynamic properties of linear macromolecules VI. Acrylic polymers. J Phys Chem Ref Data. 1982;11(4):1065–89. https://doi.org/10.1063/1.555671.

    Article  CAS  Google Scholar 

  26. Soldera A, Metatla N, Beaudoin A, Said S, Grohens Y. Heat capacities of both PMMA stereomers: comparison between atomistic simulation and experimental data. Polymer. 2010;51(9):2106–11. https://doi.org/10.1016/j.polymer.2010.03.003.

    Article  CAS  Google Scholar 

  27. Assael MJ, Botsios S, Gialou K, Metaxa IN. Thermal conductivity of polymethyl methacrylate (PMMA) and borosilicate crown glass BK7. Int J Thermophys. 2005;26(5):1595–605. https://doi.org/10.1007/s10765-005-8106-5.

    Article  CAS  Google Scholar 

  28. Jansson R. Measurement of thermal properties at elevated temperatures—Brandforsk Project 328-031. SP Rep. 2004;2004:46.

    Google Scholar 

  29. Gupta M, Yang J, Roy C. Specific heat and thermal conductivity of softwood bark and softwood char particles☆. Fuel. 2003;82(8):919–27. https://doi.org/10.1016/S0016-2361(02)00398-8.

    Article  CAS  Google Scholar 

  30. Harada T, Hata T, Ishihara S. Thermal constants of wood during the heating process measured with the laser flash method. J Wood Sci. 1998;44(6):425–31. https://doi.org/10.1007/BF00833405.

    Article  CAS  Google Scholar 

  31. Gronli MG, Antal J, Varhegyi G. A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind Eng Chem Res. 1999;38(6):2238–44. https://doi.org/10.1021/ie980601n.

    Article  CAS  Google Scholar 

  32. Koch P. Specific heat of ovendry spruce pine wood and bark. Wood Sci. 1968;1(4):203–14.

    Google Scholar 

  33. Koufopanos C, Lucchesi A, Maschio G. Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng. 1989;67(1):75–84. https://doi.org/10.1002/cjce.5450670111.

    Article  CAS  Google Scholar 

  34. Ayeni N, Adeniyi A, Abdullahi N, Bernard E, Ogunleye A. Thermogravimetric and kinetic study of methylolmelamine phosphate treated–cotton fabric. Bayero J Pure Appl Sci. 2012;5(2):51–5. https://doi.org/10.4314/bajopas.v5i2.9.

    Article  Google Scholar 

  35. Meilert K, Laub D, Kiwi J. Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. J Mol Catal A: Chem. 2005;237(1–2):101–8. https://doi.org/10.1016/j.molcata.2005.03.040.

    Article  CAS  Google Scholar 

  36. Harris VM. Handbook of textile fibers. Washington: Harris Research Laboratories; 1954.

    Google Scholar 

  37. Horrocks AR, Price D. Fire retardent materials. Abington: Woodhead Publishing Limited; 2001.

    Book  Google Scholar 

  38. Bras ML, Camino G, Bourbigot S, Delobel R. Fire retardancy of polymers: the use of intumescence. Cambridge: R Soc Chem; 1998.

    Google Scholar 

  39. Tuzcu T. Hygro-thermal properties of sheep wool insulation. Delft: Delft University of Technology; 2007.

    Google Scholar 

Download references

Funding

This study was conducted through internal funding from Victoria University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid A. M. Moinuddin.

Ethics declarations

Conflict of interest

The authors report no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pooley, L.I., Abu-Bakar, A.S., Cran, M.J. et al. Measurements of specific heat capacity of common building materials at elevated temperatures: a comparison of DSC and HDA. J Therm Anal Calorim 141, 1279–1289 (2020). https://doi.org/10.1007/s10973-019-09124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09124-5

Keywords

Navigation