Skip to main content
Log in

Analysis and characterization of nitrocellulose as binder optimized by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nitrocellulose (NC), a highly energetic compound, is widely used in nitrolacquer, celluloid, binder, propellants, and explosives. Many studies have focused on the inflammability and instability of NC, but few have investigated its use as a propellant binder. To optimize the properties of NC as a propellant binder, this study introduced 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Bmim][NTf2]) as an additive. This study focuses on the thermal pyrolysis behavior and decomposition mechanism of pure NC (NC-P), NC-NTf2 (i.e., NC mixed with [Bmim][NTf2]), and NC-NTf2-eth (i.e., NC mixed with 30% [Bmim][NTf2] and 70% ethanol). First, the thermal degradation processes of NC and [Bmim][NTf2] were investigated using thermogravimetric analysis. In addition, the essential thermodynamic parameters of NC-P, NC-NTf2, and NC-NTf2-eth were obtained by differential scanning calorimetry, and the apparent activation energies were evaluated using the Starink method and Friedman method. The results show that NC-NTf2 has low onset decomposition temperature, low activation energy, and high energy release rate. Moreover, NC-P, NC-NTf2, and NC-NTf2-eth were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy to verify and interpret the thermal analysis results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

t :

Reaction time (s)

α :

Conversion degree (mass%)

f(α):

Differential form of mechanism function

G(α):

Integral form of mechanism function

k :

Reaction rate constant (s−1)

A :

Pre-exponential factor (s−1)

E a :

Apparent activation energy (kJ mol−1)

R :

Universal gas constant (8.314 J mol K−1)

β :

Heat rate (K min−1)

T 0 :

Onset decomposition temperature (°C)

T p :

Peak decomposition temperature (°C)

T ed :

End decomposition temperature (°C)

r :

Residual mass (mass%)

Q :

Reaction heat release (mJ)

H :

Reaction heat (J g−1)

References

  1. Golubev AE, Kuvshinova SA, Burmistrov VA, et al. Modern advances in the preparation and modification of cellulose nitrates. Russ J Gen Chem. 2018;88:368–81. https://doi.org/10.1134/s1070363218020305.

    Article  CAS  Google Scholar 

  2. Wu Y, Luo Y, Ge Z. Properties and application of a novel type of Glycidyl Azide Polymer (GAP)-modified nitrocellulose powders. Propellants Explos Pyrotech. 2015;40:67–73. https://doi.org/10.1002/prep.201400005.

    Article  CAS  Google Scholar 

  3. Katoh K, Higashi E, Ariyoshi Y, et al. Relationship between accidents involving spontaneous ignition of nitric acid esters and weather conditions. Sci Technol Energ Mater. 2013;74:132–137.

    CAS  Google Scholar 

  4. Dauerman L, Tajima YA. Thermal decomposition and combustion of nitrocellulose. AIAA J. 1968;6:1468–73. https://doi.org/10.2514/3.4790.

    Article  CAS  Google Scholar 

  5. Zhang X, Ziemer KS, Weeks BL. Combustion synthesis of N-doped three-dimensional grapheme networks using grapheme networks using grapheme oxide-nitrocellulose composites. Adv Compos Hybrid Mater. 2019;2:492–500. https://doi.org/10.1007/s42114-019-00113-8.

    Article  CAS  Google Scholar 

  6. Sovizi MR, Hajimirsadeghi SS, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168:1134–9. https://doi.org/10.1016/j.jhazmat.2009.02.146.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Brandon LW. Preparation of sub-micron nitrocellulose particles for improved combustion behavior. J Hazard Mater. 2014;268:224–8. https://doi.org/10.1016/j.jhazmat.2014.01.019.

    Article  CAS  PubMed  Google Scholar 

  8. Wang K, Liu D, Xu S, et al. Research on the thermal history’s in fluence on the thermal stability of EHN and NC. Thermochim Acta. 2015;610:23–8. https://doi.org/10.1016/j.tca.2015.04.022.

    Article  CAS  Google Scholar 

  9. Lin CP, Shu CM. A comparison of thermal decomposition energy and nitrogen content of nitrocellulose in non-fat process of linters by DSC and EA. J Therm Anal Calorim. 2009;95:547–52. https://doi.org/10.1007/s10973-008-9463-7.

    Article  CAS  Google Scholar 

  10. Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, et al. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4. https://doi.org/10.1016/j.jhazmat.2008.05.161.

    Article  CAS  PubMed  Google Scholar 

  11. Katoh K, Ito S, Ogata Y, et al. Effect of industrial water components on thermal stability of nitrocellulose. J Therm Anal Calorim. 2010;99:159–64. https://doi.org/10.1007/s10973-009-0492-7.

    Article  CAS  Google Scholar 

  12. Katoh K, Soramoto T, Higashi E, et al. Influence of water on the thermal stability of nitrocellulose. Sci Technol Energ Mater. 2014;75(2):44–9.

    CAS  Google Scholar 

  13. Nie ZY. Emergency disposal experience and enlightenment of chemical defense in “Tianjin Port 8·12 Explosion Accident”. Chin J Pharmacol Toxicol. 2015. https://doi.org/10.3867/j.issn.1000-3002.2015.05.062.

    Article  Google Scholar 

  14. Zhang H, Duan H, Zuo J, et al. Characterization of post-disaster environmental management for Hazardous Materials Incidents: Lessons learnt from the Tianjin warehouse explosion, China. J Environ Manag. 2017;99:21–30. https://doi.org/10.1016/j.jenvman.2017.05.021.

    Article  Google Scholar 

  15. He Y, He Y, Liu J, et al. Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. J Hazard Mater. 2017;340:202–12. https://doi.org/10.1016/j.jhazmat.2017.06.029.

    Article  CAS  PubMed  Google Scholar 

  16. Wei RC, He YP, Liu JH, et al. Experimental study on the fire properties of nitrocellulose with different structures. Materials (Basel). 2017;10:316–31. https://doi.org/10.3390/ma10030316.

    Article  CAS  Google Scholar 

  17. Wei RC, He YP, Zhang Z, et al. Effect of different humectants on the thermal stability and fire hazard of nitrocellulose. J Therm Anal Calorim. 2018;133:1291–307. https://doi.org/10.1007/s10973-018-7235-6.

    Article  CAS  Google Scholar 

  18. Luo QB, Ren T, Shen H, et al. The thermal properties of nitrocellulose: from thermal decomposition to thermal explosion. Combust Sci Technol. 2018;190:579–90. https://doi.org/10.1080/00102202.2017.1396586.

    Article  CAS  Google Scholar 

  19. Luo Q, Liang D, Shen H. Evaluation of self-heating and spontaneous combustion risk of biomass and fishmeal with thermal analysis (DSC-TG) and self-heating substances test experiments. Thermochim Acta. 2016;635:1–7. https://doi.org/10.1016/j.tca.2016.04.017.

    Article  CAS  Google Scholar 

  20. Guo ML, Ma ZL, He LM, et al. Effect of varied proportion of GAP-ETPE/NC as binder on thermal decomposition behaviors, stability and mechanical properties of nitramine propellants. J Therm Anal Calorim. 2017;130:909–18. https://doi.org/10.1007/s10973-017-6351-z.

    Article  CAS  Google Scholar 

  21. Meng XJ, Xiao ZG. Synthesis, thermal properties and sensitivity of ladder-like nitrocellulose grafted by polyethylene glycol. Propellants Explos Pyrotech. 2018;43:300–7. https://doi.org/10.1002/prep.201700193.

    Article  CAS  Google Scholar 

  22. Abd-Elghany M, Klapötke TM, Elbeih A. Investigation of 2,2,2-trinitroethyl-nitrocarbamate as a high energy dense oxidizer and its mixture with Nitrocellulose (thermal behavior and decomposition kinetics). J Anal Appl Pyrolysis. 2017;128:397–404. https://doi.org/10.1016/j.jaap.2017.09.010.

    Article  CAS  Google Scholar 

  23. Niehaus M. Compounding of glycidyl azide polymer with nitrocellulose and its influence on the properties of propellants. Propellants Explos Pyrotech. 2000;25:236–40. https://doi.org/10.1002/1521-4087(200011)25:5%3c236:AID-PREP236%3e3.0.CO;2-C.

    Article  CAS  Google Scholar 

  24. Zhang X, Hikal WM, Zhang Y, et al. Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites. Appl Phys Lett. 2013;102:141905. https://doi.org/10.1063/1.4801846.

    Article  CAS  Google Scholar 

  25. Wang Z, Zhang TF, Zhao BB, et al. Effect of nitrocellulose (NC) on morphology, rheological and mechanical properties of glycidyl azide polymer based energetic thermoplastic elastomer/NC blends. Polym Int. 2017;66:705–11. https://doi.org/10.1002/pi.5312.

    Article  CAS  Google Scholar 

  26. Zhang QH, Shreeve JM. Ionic liquid propellants: future fuels for space propulsion. Chem A Eur J. 2013;19:15446–51. https://doi.org/10.1002/chem.201303131.

    Article  CAS  Google Scholar 

  27. Matsunaga H, Katoh K, Habu H, et al. Preparation and thermal decomposition behavior of high-energy ionic liquids based on ammonium dinitramide and amine nitrates. Trans Japan Soc Aeronaut Sp Sci Aerosp Technol Jpn. 2018;16:88–92. https://doi.org/10.2322/tastj.16.88.

    Article  Google Scholar 

  28. Duan E, Guo B, Zhang D, et al. Absorption of NO and NO2 in caprolactam tetrabutyl ammonium halide ionic liquids. J Air Waste Manag Assoc. 2011;61:1393–7. https://doi.org/10.1080/10473289.2011.623635.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao GY, Jiang T, Gao HX, et al. Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem. 2004;6:75–7.

    Article  CAS  Google Scholar 

  30. Vyazovkin S, Burnham AK, Criado JM, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Chrissafis K, Lorenzo MLD, et al. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. https://doi.org/10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  32. Lin Y, Liao YF, Yu ZS, et al. Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA-FTIR analysis. Energy Convers Manag. 2016;118:345–52. https://doi.org/10.1016/j.enconman.2016.04.004.

    Article  CAS  Google Scholar 

  33. Shen S, Jiang JC, Zhang WX, et al. Process safety evaluation of the synthesis of tert-butyl peracetate. J Loss Prev Process Ind. 2018;54:153–62. https://doi.org/10.1016/j.jlp.2018.03.009.

    Article  CAS  Google Scholar 

  34. Huidobro JA, Iglesias I, Alfonso BF, et al. Reducing the effects of noise in the calculation of activation energy by the Friedman method. Chemom Intell Lab Syst. 2016;151:146–52. https://doi.org/10.1016/j.chemolab.2015.12.012.

    Article  CAS  Google Scholar 

  35. Stoessel F. Thermal safety of chemical processes: risk assessment and process design. Hoboken: Wiley; 2017.

    Google Scholar 

  36. Ning BK, Liu R, Yang ZQ, et al. Numerical simulation of kinetic parameters of the first-order autocatalytic decomposition of NC. Energ Mater. 1999;7:162–5.

    CAS  Google Scholar 

  37. Binke N, Rong L, Zhengquan Y, et al. Studies on the kinetics of the first order autocatalytic decomposition reaction of highly nitrated nitrocellulose. J Therm Anal Calorim. 1999;58:403–11. https://doi.org/10.1023/A:1010163423775.

    Article  CAS  Google Scholar 

  38. Lin GB, Zhang CX, Chen LP, et al. Kinetic analysis and self-accelerating decomposition temperature (SADT) of β-nitroso-α-naphthol. Process Saf Environ. 2015;95:69–76. https://doi.org/10.1016/j.psep.2015.02.014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the financial support received from the National Key R&D program, “Study on Safety Control Technology of Storage and Transportation Network of Hazardous Chemicals in Chemical Parks by Multi Species Coupling” (No. 2016YFC0801500), the National Natural Science Foundation of China (21436006, 51834007, 51874181, 51804167), the Jiangsu Natural Science Foundation (BK20150953), the Major Projects of the Natural Science Research for Colleges in Jiangsu Province (17KJA620002), Graduate Student Scientific Research Innovation Project of Jiangsu Province (KYCX19_0829), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhai Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Jiang, H., Pan, X. et al. Analysis and characterization of nitrocellulose as binder optimized by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Therm Anal Calorim 143, 113–126 (2021). https://doi.org/10.1007/s10973-019-09123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09123-6

Keywords

Navigation