Skip to main content
Log in

On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar radiative energy represents an important source of renewable energy. Of late, hybrid colloidal nanodispersion as an elevated heat transport agent acquires immense interest among researchers rather than unitary nanoliquids. The aim of this investigation was to quantify the flow patterns and heat transfer behaviour of hybrid nanoliquids in presence of nonlinear solar radiation for various solar thermal apparatus. Alumina–copper nanoingredients with water as host fluid are considered. The leading PDEs of our system are turned into ODEs by using prevalent similarity transformation. After that those ODEs have been solved by RK-4-based shooting method. Subsequently, the influences of relevant parameters on the heat transfer of fluid have been talked over on behalf of graphical and tabular approach. Extracted results are verified with experimental plus simulated data. Results communicate that solar radiation fosters heat transport in suction. Hybrid solution exhibits impressive increment in heat transport for suction. Though injection reduces the effect, the decay rate is slower for hybrid nanocomposite. Flipping nature of velocity is perceived for Reynolds number, rotational parameter, and nanoparticle concentration except the variations of suction/injection parameter. We believe that this comprehensive investigation will have potential applications in solar thermal power fabrication, solar ponds, solar thermo electric cells, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP, editors. Developments and applications of non-Newtonian flows, vol. 66. New York: ASME; 1995.

    Google Scholar 

  2. Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng. 2010;30:2213–8.

    CAS  Google Scholar 

  3. Tiara AM, Chakraborty S, Sarkar I, Ashok A, Pal SK, Chakraborty S. Heat transfer enhancement using surfactant based alumina nanofluid jet from a hot steel plate. Exp Therm Fluid Sci. 2017;89:295–303.

    CAS  Google Scholar 

  4. Wei X, Wang L. Synthesis and thermal conductivity of microfluidic copper nanofluids. Particuology. 2010;8:262–71.

    CAS  Google Scholar 

  5. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121(2):280–9.

    CAS  Google Scholar 

  6. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79(14):2252–4.

    CAS  Google Scholar 

  7. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.

    CAS  Google Scholar 

  8. Fan J, Wang L. Review of heat conduction in nanofluids. J Heat Transf. 2011;133(4):040801.

    Google Scholar 

  9. Fakour M, Vahabzadeh A, Ganji DD. Study of heat transfer and flow of nanofluid in permeable channel in the presence of magnetic field. Propuls Power Res. 2015;4(1):50–62.

    Google Scholar 

  10. Karimipour A, Nezhad AH, D’Orazio A, Esfe MH, Safaei MR, Shirani E. Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur J Mech B Fluids. 2015;49:89–99.

    Google Scholar 

  11. Santra AK, Sen S, Chakraborty N. Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates. Int J Therm Sci. 2009;48:391–400.

    CAS  Google Scholar 

  12. Hoa CJ, Chiou YH, Yan WM, Ghalambaz M. Cooling performance of Al2O3-water nanofluid flow in a minichannel with thermal buoyancy and wall conduction effects. Case Stud Therm Eng. 2018;12:833–42.

    Google Scholar 

  13. Acharya N, Das K, Kundu PK. The squeezing flow of Cu–water and Cu–kerosene nanofluids between two parallel plates. Alex Eng J. 2016;55:1177–86.

    Google Scholar 

  14. Sheikholeslami M, Ganji DD. Magneto hydrodynamic flow in a permeable channel filled with nanofluid. Sci Iran B. 2014;21(1):203–12.

    Google Scholar 

  15. Makinde OD, Mabood F, Ibrahim SM. Chemically reacting on MHD boundary layer flow of nanofluids over a nonlinear stretching sheet with heat source/sink and thermal radiation. Therm Sci. 2018;22:495–506.

    Google Scholar 

  16. Mabood F, Khan WA, Makinde OD. Hydromagnetic flow of a variable viscosity nanofluid in a rotating permeable channel with hall effects. J Eng Thermophys. 2017;26:553–66.

    CAS  Google Scholar 

  17. Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Product. 2019;215:963–77.

    CAS  Google Scholar 

  18. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Google Scholar 

  19. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    CAS  Google Scholar 

  20. Sheikholeslami M, Haq R, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    CAS  Google Scholar 

  21. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    CAS  Google Scholar 

  22. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    CAS  Google Scholar 

  23. Sheikholeslami M, Jafaryar M, Ali JA, Hamad SM, Divsalar A, Shafee A, Nguyen TK, Li Z. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. J Mol Liq. 2019;291:111283.

    CAS  Google Scholar 

  24. Sheikholeslami M, Rezaeianjouybari B, Darji M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    CAS  Google Scholar 

  25. Mabood F, Nayak MK, Chamkha AJ. Heat transfer on the cross flow of micropolar fluids over a thin needle moving in a parallel stream influenced by binary chemical reaction and Arrhenius activation energy. Eur Phys J Plus. 2019;134:427. https://doi.org/10.1140/epjp/i2019-12716-9.

    Article  CAS  Google Scholar 

  26. Zeeshan A, Ellahi R, Mabood F, Hussain F. Numerical study on bi-phase coupled stress fluid in the presence of Hafnium and metallic nanoparticles over an inclined plane. Int J Numer Methods Heat Fluid Flow. 2019;29:2854–69. https://doi.org/10.1108/HFF-11-2018-0677.

    Article  Google Scholar 

  27. Mabood F, Ibrahim SM, Khan WA. Effect of melting and heat generation/absorption on Sisko nanofluid over a stretching surface with nonlinear radiation. Phys Scr. 2019;94:065701.

    CAS  Google Scholar 

  28. Ibrahim SM, Kumar PV, Lorenzini G, Lorenzini E, Mabood F. Numerical study of the onset of chemical reaction and heat source on dissipative MHD stagnation point flow of Casson nanofluid over a nonlinear stretching sheet with velocity slip and convective boundary conditions. J Eng Thermophys. 2017;26:256–71.

    CAS  Google Scholar 

  29. Acharya N, Das K, Kundu PK. On the heat transport mechanism and entropy generation in a nozzle of liquid rocket engine using ferrofluid (CoFe2O4): a computational framework. J Comput Des Eng. 2019. https://doi.org/10.1016/j.jcde.2019.02.003.

    Article  Google Scholar 

  30. Acharya N, Das K, Kundu PK. Influence of multiple slips and chemical reaction on radiative MHD Williamson nanofluid flow in porous medium: a computational framework. Multidiscip Model Mater Struct. 2019;15(3):630–58.

    CAS  Google Scholar 

  31. Acharya N. Active-passive controls of liquid di-hydrogen mono-oxide based nanofluidic transport over a bended surface. Int J Hydrogen Energy. 2019;44(50):27600–14.

    CAS  Google Scholar 

  32. Hatami M, Ganji DD. Heat transfer and nanofluid flow in suction and blowing process between parallel disks in presence of variable magnetic field. J Mol Liq. 2014;190:159–68.

    CAS  Google Scholar 

  33. Ullah I, Waqas M, Hayat T, Alsaedi A, Khan MI. Thermally radiated squeezed flow of magneto-nanofluid between two parallel disks with chemical reaction. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7482-6.

    Article  Google Scholar 

  34. Mirzaei M, Dehghan M. Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach. Heat Mass Transf. 2013;49:1803–11.

    CAS  Google Scholar 

  35. Abdollahi A, Mohammed HA, Vanaki SM, Osia A, Haghighi MRG. Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alex Eng J. 2017;56:161–70.

    Google Scholar 

  36. Mohyud-Din ST, Khan U, Hassan SM. Numerical investigation of magnetohydrodynamic flow and heat transfer of copper–water nanofluid in a channel with non-parallel walls considering different shapes of nanoparticles. Adv Mech Eng. 2016;8(3):1–9.

    Google Scholar 

  37. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164–77.

    CAS  Google Scholar 

  38. Chamkha AJ, Miroshnichenko IV, Sheremet MA. Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity. J Therm Sci Eng Appl. 2017;9:041004.

    Google Scholar 

  39. Gorla RSR, Siddiqa S, Mansour MA, Rashad AM, Salah T. Heat source/sink effects on a hybrid nanofluid-filled porous cavity. J Thermophys Heat Transf. 2017;31:847–57.

    CAS  Google Scholar 

  40. Selvakumar P, Suresh S. Use of Al2O3–Cu/water hybrid nanofluid in an electronic heat sink. IEEE Trans Compon Packag Manuf Technol. 2012;2:1600–7.

    CAS  Google Scholar 

  41. Takabi B, Gheitaghy AM, Tazraei P. Hybrid water-based suspension of Al2O3 and Cu nanoparticles on laminar convection effectiveness. J Thermophys Heat Transf. 2016;30(3):523–32.

    CAS  Google Scholar 

  42. Devi SSU, Devi SPA. Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can J Phys. 2016;94(5):490–6.

    CAS  Google Scholar 

  43. Saqib M, Khan I, Shafie S. Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms. Adv Differ Equ. 2019;2019:52. https://doi.org/10.1186/s13662-019-1988-5.

    Article  Google Scholar 

  44. Shah Z, Islam S, Gul T, Bonyah E, Khan MA. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates. Results Phys. 2018;9:1201–14.

    Google Scholar 

  45. Khan JA, Mustafa M, Hayat T, Turkyilmazoglu M, Alsaedi A. Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno’s model. Int J Numer Methods Heat Fluid Flow. 2017;27(1):221–34.

    Google Scholar 

  46. Acharya N, Das K, Kundu PK. Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel: a thermal framework. J Therm Anal Calorim. 2019;138(1):461–77. https://doi.org/10.1007/s10973-019-08126-7.

    Article  CAS  Google Scholar 

  47. Chamkha AJ, Dogonchi AS, Ganji DD. Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv. 2019;9:025103. https://doi.org/10.1063/1.5086247.

    Article  CAS  Google Scholar 

  48. Acharya N, Bag R, Kundu PK. Influence of Hall current on radiative nanofluid flow over a spinning disk: a hybrid approach. Phys E Low Dimens Syst Nanostruct. 2019;111:103–12.

    CAS  Google Scholar 

  49. Acharya N, Das K, Kundu PK, Acharya N, Das K, Kundu PK. Fabrication of active and passive controls of nanoparticles of unsteady nanofluid flow from a spinning body using HPM. Eur Phys J Plus. 2017;132:323. https://doi.org/10.1140/epjp/i2017-11629-y.

    Article  CAS  Google Scholar 

  50. Acharya N, Das K, Kundu PK. Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study. Appl Nanosci. 2018;8(3):369–78. https://doi.org/10.1007/s13204-018-0794-9.

    Article  CAS  Google Scholar 

  51. Hayat T, Qayyum S, Imtiaz M, Alzahrani F, Alsaedi A. Partial slip effect in flow of magnetite Fe3O4 nanoparticles between rotating stretchable disks. J Magn Magn Mater. 2016;413:39–48.

    CAS  Google Scholar 

  52. Mustafa M. MHD nanofluid flow over a rotating disk with partial slip effects: buongiorno model. Int J Heat Mass Transf. 2017;108:1910–6.

    Google Scholar 

  53. Hunt AJ. Small particle heat exchangers, Report LBL-78421 for the US Department of Energy, Lawrence Berkeley Laboratory, 1978.

  54. Kandasamy R, Muhaimin I, Khamis AB, Roslan RB. Unsteady Heimenz flow of Cu nanofluid over a porous wedge in the presence of thermal stratification due to solar energy radiation: lie group transformation. Int J Therm Sci. 2013;65:196–205.

    CAS  Google Scholar 

  55. Shehzad SA, Hayat T, Alsaedi A, Obid MA. Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: a model for solar energy. Appl Math Comput. 2014;248:273–86.

    Google Scholar 

  56. Das K, Duari PR, Kundu PK. Solar radiation effect on Cu–water nanofluid flow over a stretching sheet with surface slip and temperature jump. Arab J Sci Eng. 2014;39:9015–23.

    CAS  Google Scholar 

  57. Acharya N, Das K, Kundu PK. Framing the effects of solar radiation on magneto-hydrodynamics bioconvection nanofluid flow in presence of gyrotactic microorganisms. J Mol Liq. 2016;222:28–37.

    CAS  Google Scholar 

  58. Anbuchezhian N, Srinivasan K, Chandrasekaran K, Kandasamy R. Magneto hydrodynamic effects on natural convection flow of a nanofluid in the presence of heat source due to solar energy. Meccanica. 2013;48:307–21.

    Google Scholar 

  59. Archana M, Gireesha BJ, Prasannakumara BC, Gorla RSR. Influence of nonlinear thermal radiation on rotating flow of Casson nanofluid. Nonlinear Eng Model Appl. 2017. https://doi.org/10.1515/nleng-2017-0041.

    Article  Google Scholar 

  60. Hatami M, Jing D. Optimization of wavy direct absorber solar collector (WDASC) using Al2O3–water Nanofluid and RSM analysis. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.04.137.

    Article  Google Scholar 

  61. Prakash J, Siva EP, Tripathi D, Kuharat S, Bég OA. Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: modelling a solar magneto-biomimetic nanopump. Renew Energy. 2018. https://doi.org/10.1016/j.renene.2018.08.096.

    Article  Google Scholar 

  62. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.

    Google Scholar 

  63. Maxwell J. A treatise on electricity and magnetism. 2nd ed. Cambridge: Oxford University Press; 1904.

    Google Scholar 

  64. Bowers J, Cao H, Qiao G, Li Q, Zhang G, Mura E, Ding Y. Flow and heat transfer behaviour of nanofluids in microchannels. Prog Nat Sci Mater Int. 2018;28(2):225–34.

    CAS  Google Scholar 

  65. Moghaddaszadeh N, Esfahani JA, Mahian O. Performance enhancement of heat exchangers using eccentric tape inserts and nanofluids. J Therm Anal Calorim. 2019;137(3):865–77. https://doi.org/10.1007/s10973-019-08009-x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilankush Acharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, N. On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy. J Therm Anal Calorim 141, 1425–1442 (2020). https://doi.org/10.1007/s10973-019-09111-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09111-w

Keywords

Mathematics subject classification

Navigation