Skip to main content
Log in

An investigation of PLA/Babassu cold crystallization kinetics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, poly(lactic acid) (PLA)-based vegetal Babassu composites were compounded and their thermal properties ascertained. Babassu acted as a facilitator agent for the nonisothermal cold crystallization of PLA. Nonisothermal cold crystallization kinetics of PLA compounds was investigated by differential scanning calorimetry applying Ozawa and Mo models; the activation energy was evaluated by Friedman equation. Our results indicate that Mo’s model describes the experimental data successfully; the maximum crystallization rates observed for PLA/Babassu composites are higher than that found for neat PLA. Ozawa model failed to provide an adequate description for the composites, mostly due to the neglected secondary crystallization and impingement of spherulites. Friedman analysis shows that 5 wt% Babassu filler reduced the activation energy of the crystallization process greatly, leading to a shorter crystallization time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Rhima J, Park H, Ha C. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38:1629–52.

    Article  Google Scholar 

  2. Chen P, Lian H, Shih Y, Chen-Wei S, Jeng R. Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Mater Chem Phys. 2017;196:249–55.

    Article  CAS  Google Scholar 

  3. Solarski S, Ferreira M, Devaux E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer. 2005;46:11187–92.

    Article  CAS  Google Scholar 

  4. Li Y, Han C, Yancun Y, Xiao L, Shao Y. Crystallization behaviors of poly(lactic acid) composites fabricated using functionalized eggshell powder and poly(ethylene glycol). Thermochim Acta. 2018;663:67–76.

    Article  CAS  Google Scholar 

  5. As’habi L, Jafari SH, Khonakdar HA, Häussler L, Wagenknecht U, Heinrich G. Non-isothermal crystallization behavior of PLA/LLDPE/nanoclay hybrid: synergistic role of LLDPE and clay. Thermochim Acta. 2013;565:102–13.

    Article  Google Scholar 

  6. Tsuji H, Takai H, Fukuda N, Takikawa H. Non-isothermal crystallization behavior of poly(l-lactic acid) in the presence of various additives. Macromol Mater Eng. 2006;291:325–35.

    Article  CAS  Google Scholar 

  7. Cao D, Wu L. Poly(l-lactic acid)/silicon dioxide nanocomposite prepared via the in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: isothermal crystallization and melting behaviors. J Appl Polym Sci. 2009;111:1045–50.

    Article  CAS  Google Scholar 

  8. Nejati E, Firouzdor V, Eslaminejad M, Bagheri F. Needle-like nano hydroxyapatite/poly(l-lactide acid) composite scaffold for bone tissue engineering application. Mater Sci Eng, C. 2009;29:942–9.

    Article  CAS  Google Scholar 

  9. Xu ZH, Niu YH, Wang ZG, Li H, Yang L, Qiu J, Wang HW. Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl. Mater. Interfaces. 2011;3:3744–53.

    Article  CAS  Google Scholar 

  10. Zhao HW, Bian YJ, Li Y, Han CY, Dong QL, Dong LS, Gao Y. Enhancing cold crystallization of poly(l-lactide) by a montmorillonitic substrate favoring nucleation. Thermochim Acta. 2014;588:47–56.

    Article  CAS  Google Scholar 

  11. Wu DF, Wu L, Wu LF, Xu B, Zhang YS, Zhang M. Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys. 2007;45:1100–13.

    Article  CAS  Google Scholar 

  12. Sarazin P, Li G, Orts W, Favis B. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer. 2008;49:599–609.

    Article  CAS  Google Scholar 

  13. Li Y, Han CY, Yu YC, Xiao LG, Shao Y. Isothermal and non-isothermal cold crystallization kinetics of poly(l-lactide)/functionalized eggshell powder composites. J Therm Anal Calorim. 2017;131:2213–23.

    Article  Google Scholar 

  14. Aliotta L, Cinellia P, Coltellia MB, Righetti MC, Gazzano M, Lazzeria A. Effect of nucleating agents on crystallinity and properties of poly(lactic acid) (PLA). Eur Polym J. 2017;93:822–32.

    Article  CAS  Google Scholar 

  15. Beber VC, Barros S, Banea MD, Brede M, Carvalho LH, Hoffmann R, Costa ARM, Bezerra EB, Silva IDS, Haag K, Koschek K, Wellen RMR. Effect of Babassu natural filler on PBAT/PHB biodegradable blends: an investigation of thermal, mechanical, and morphological behavior. Materials (Basel). 2018;16:1–16.

    Google Scholar 

  16. Vitorino MBC, Cipriano PB, Wellen RMR, Canedo EL, Carvalho LH. Nonisothermal melt crystallization of PHB/Babassu compounds kinetics of crystallization. J Therm Anal Calorim. 2016;126:755–69.

    Article  CAS  Google Scholar 

  17. Yamamoto M, Witt U, Skupin G, Beimborn D, Müller RJ. Biodegradable aliphatic–aromatic polyesters: Ecoflex. In: Steinbüchel YDA, editor. Biopolymers—Polyesters III—applications and commercial products. New York: Wiley; 2002. p. 299.

    Google Scholar 

  18. Shahzad A. Mechanical properties of lignocellulosic fiber composites in lignocellulosic fibre and biomass-based composite materials. Amsterdam: Elsevier; 2017. p. 193–223.

    Book  Google Scholar 

  19. Du H, Liu W, Zhang M, Si C, Li B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym. 2019;209:130–44.

    Article  CAS  Google Scholar 

  20. Silva TR, Silva IDS, Andrade QAF, Wellen RMR, Medeiros ES, Bastos YLM, Rego JKMA, Santos ASF. The effect of microcrystalline cellulose on poly(propylene) crystallization: an investigation of nonisothermal crystallization kinetics. Mater Res Express. 2019;6:065313.

    Article  Google Scholar 

  21. Wellen RMR, Canedo EL. Nonisothermal melt and cold crystallization kinetics of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate)/carbon black compounds. Evaluation of Pseudo-Avrami, Ozawa, and Mo models. J Mater Res. 2016;31:729–39.

    Article  CAS  Google Scholar 

  22. Ries A, Canedo EL, Souto CR, Wellen RMR. Non-isothermal cold crystallization kinetics of poly(3-hydoxybutyrate) filled with zinc oxide. Thermochim Acta. 2016;637:74–81.

    Article  CAS  Google Scholar 

  23. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM. Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab. 2012;97:2027–36.

    Article  CAS  Google Scholar 

  24. Bojda J, Piorkowska E. Shear-induced nonisothermal crystallization of two grades of PLA. Polym Testing. 2016;50:172–81.

    Article  CAS  Google Scholar 

  25. Li Yi, Han Changyu, Zhang Xin, Dong Qinglin, Dong Lisong. Effects of molten poly(d,l-lactide) on nonisothermal crystallization instereocomplex of poly(l-lactide) with poly(d-lactide). Thermochim Acta. 2013;573:193–9.

    Article  CAS  Google Scholar 

  26. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  27. Su Z, Guo W, Liu Y, Li Q, Wu C. Non-isothermal crystallization kinetics of poly(lactic acid)/modified carbon black composite. Polym Bull. 2009;62:629–42.

    Article  CAS  Google Scholar 

  28. Li C, Dou Q. Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly(lactic acid): effect of dilithium hexahydrophthalate as a novel nucleating agent. Thermochim Acta. 2014;594:31–8.

    Article  CAS  Google Scholar 

  29. Cebe P. Non-isothermal crystallization of poly(etheretherketone) aromatic polymer composite. Polym Compos. 1988;9:271–9.

    Article  CAS  Google Scholar 

  30. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

  31. Liu T, Mo Z, Zhang H. Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J Appl Polym Sci. 1998;67:815–21.

    Article  CAS  Google Scholar 

  32. Lv Q, Wua D, Qiu Y, Chen J, Yao X, Ding K, Wei N. Crystallization of poly(e-caprolactone) composites with graphite nanoplatelets: relations between nucleation and platelet thickness. Thermochim Acta. 2015;612:25–33.

    Article  CAS  Google Scholar 

  33. Deb P. Kinetics of heterogeneous solid state processes. New York: Springer; 2014.

    Book  Google Scholar 

  34. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermallystimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  35. Ding W, Chu RKM, Mark LH, Park CB, Sain M. Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of \(CO_2\). Eur Polym J. 2015;71:231–47.

    Article  CAS  Google Scholar 

  36. Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D. PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta. 2010;511:129–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001) and Deutscher Akademischer Austauschdienst (DAAD) for the financial support within the PROBRAL project PPP Brasilien (Projektbezogener Personenaustausch Brasilien). Authors also thank Shirley Nóbrega Cavalcanti and Amanda Alves Maciel for processing PLA compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate Maria Ramos Wellen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 3723 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Silva, I.D., Schäfer, H., Jaques, N.G. et al. An investigation of PLA/Babassu cold crystallization kinetics. J Therm Anal Calorim 141, 1389–1397 (2020). https://doi.org/10.1007/s10973-019-09062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09062-2

Keywords

Navigation