Skip to main content
Log in

Crystallization kinetics, morphology and spherulite growth in poly(trimethylene terephthalate) modified with bisphenol-A diglycidyl ether

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The role of bisphenol-A diglycidyl ether (BADGE)—a weakly interacting, low molecular weight additive on crystallization kinetics, morphology and spherulite growth of semi-crystalline thermoplastic- poly(trimethylene terephthalate) (PTT) is quantitatively evaluated. Blends of PTT with different loadings of BADGE were prepared by melt blending. Weak secondary interactions between BADGE and PTT influenced the crystallization kinetics of PTT. This gives rise to concentration-dependent changes in spherulite morphology, crystallization kinetics and stereochemical conformation of PTT. BADGE behaved as a nucleating agent/plasticizer for PTT depending on its loading and changed the conformational distribution of PTT thereby facilitating chain mobility, along with diffusion and attachment of chain segments to crystal nuclei and growth faces. Crystallization kinetics and glass transition studies were carried out using differential scanning calorimetry, while spherulite growth rate was followed using polarized optical microscope equipped with hot stage, and the microphase structure evaluated using small-angle X-ray scattering studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Men Y, Rieger J, Strobl G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys Rev Lett. 2003;91:095502.

    Article  PubMed  CAS  Google Scholar 

  2. Karger-Kocsis J. How does “phase transformation toughening” work in semicrystalline polymers? Polym Eng Sci. 1996;36:203–10.

    Article  CAS  Google Scholar 

  3. Nguyen TL, Choi H, Ko S-J, Uddin MA, Walker B, Yum S, et al. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ~ 300 nm thick conventional single-cell device. Energy Environ Sci. 2014;7:3040–51.

    Article  CAS  Google Scholar 

  4. Mu Y, Zhao G, Chen A, Li S. Modeling and simulation of morphology variation during the solidification of polymer melts with amorphous and semi-crystalline phases. Polym Adv Technol. 2014;25:1471–83.

    Article  CAS  Google Scholar 

  5. Semicrystalline polymers. Electron microscopy of polymers (Internet). Berlin: Springer; 2008. p. 295–327.

  6. van Krevelen DW, Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from Additive Group Contributions. Amsterdam: Elsevier; 2009.

    Book  Google Scholar 

  7. Yamamoto T. Computer modeling of polymer crystallization—toward computer-assisted materials’ design. Polymer. 2009;50:1975–85.

    Article  CAS  Google Scholar 

  8. Mandelkern L. Crystallization of polymers. Cambridge: Cambridge University Press; 2002.

    Google Scholar 

  9. Rastogi S, Lippits DR, Peters GWM, Spiess HW. Heterogenity in polymer melts from melting of polymer crystals. Nat Mater. 2005;4:635.

    Article  CAS  PubMed  Google Scholar 

  10. Dasmahapatra AK, Nanavati H, Kumaraswamy G. Polymer crystallization in the presence of “sticky” additives. J Chem Phys. 2009;131:074905.

    Article  PubMed  CAS  Google Scholar 

  11. Strawhecker KE, Manias E. Structure and properties of poly(vinyl alcohol)/Na + montmorillonite nanocomposites. Chem Mater. 2000;12:2943–9.

    Article  CAS  Google Scholar 

  12. Crosby AJ, Lee J-Y. Polymer nanocomposites: the “nano” effect on mechanical properties. Polym Rev. 2007;47:217–29.

    Article  CAS  Google Scholar 

  13. Cabedo L, Luis Feijoo J, Pilar Villanueva M, Lagarón JM, Giménez E. Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol Symp. 2006;233:191–7.

    Article  CAS  Google Scholar 

  14. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci. 2011;36:638–70.

    Article  CAS  Google Scholar 

  15. Rao PJM. Mechanics of polymer–clay nanocomposites. Macromolecules. 2007;40:290–6.

    Article  CAS  Google Scholar 

  16. Chan CH, Thomas S. Poly (trimethylene terephthalate)—the new generation of engineering thermoplastic polyester. Rijeka: InTech; 2012.

    Book  Google Scholar 

  17. Chuah HH. Orientation and structure development in poly(trimethylene terephthalate) tensile drawing. Macromolecules. 2001;34:6985–93.

    Article  CAS  Google Scholar 

  18. Desborough IJ, Hall IH, Neisser JZ. The structure of poly(trimethylene terephthalate). Polymer. 1979;20:545–52.

    Article  CAS  Google Scholar 

  19. Chuah HH. Poly(trimethylene terephthalate). In: Mark HF, editor. Encyclopedia of polymer science and technology. Hoboken: Wiley; 2002.

    Google Scholar 

  20. Utracki LA. Glass transition temperature in polymer blends. Adv Polym Technol. 1985;5:33–9.

    Article  Google Scholar 

  21. Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A. Prediction of glass transition temperatures: binary blends and copolymers. Mater Lett. 2008;62:3152–5.

    Article  CAS  Google Scholar 

  22. Aubin M, Prud’homme RE. Analysis of the glass transition temperature of miscible polymer blends. Macromolecules. 1988;21:2945–9.

    Article  CAS  Google Scholar 

  23. Nandi AK, Mandal BM, Bhattacharyya SN, Roy SK. On the occurrence of cusps in the Tg-composition diagrams of compatible polymer pairs. Polym Commun. 1986;27:151–4.

    CAS  Google Scholar 

  24. Roy SK, Brown GR, St-pierre LE. The influence of thermodynamic interactions on the glass transition of poly (vinyl chloride)-benzylbutylphthalate mixtures. Int J Polym Mater Polym Biomater. 1983;10:13–20.

    Article  CAS  Google Scholar 

  25. Srimoaon P, Dangseeyun N, Supaphol P. Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate). Eur Polym J. 2004;40:599–608.

    Article  CAS  Google Scholar 

  26. Marand H, Xu J, Srinivas S. Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman-weeks extrapolations. Macromolecules. 1998;31:8219–29.

    Article  CAS  Google Scholar 

  27. Rostami SD. Advances in theory of equilibrium melting point depression in miscible polymer blends. Eur Polym J. 2000;36:2285–90.

    Article  CAS  Google Scholar 

  28. Rim PB, Runt JP. Melting point depression in crystalline/compatible polymer blends. Macromolecules. 1984;17:1520–6.

    Article  CAS  Google Scholar 

  29. Avrami M. Kinetics of phase change. I. general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  30. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.

    Article  CAS  Google Scholar 

  31. Hong P-D, Chung W-T, Hsu C-F. Crystallization kinetics and morphology of poly(trimethylene terephthalate). Polymer. 2002;43:3335–43.

    Article  CAS  Google Scholar 

  32. Grenier D, Prud Homme RE. Avrami analysis: three experimental limiting factors. J Polym Sci Polym Phys Ed. 1980;18:1655–7.

    Article  CAS  Google Scholar 

  33. Zhang Q-X, Yu Z-Z, Xie X-L, Mai Y-W. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer. 2004;45:5985–94.

    Article  CAS  Google Scholar 

  34. Agrawal H, Awasthib K, Saraswata VK. Crystallization activation energy of polyethylene terepthalate (PET) and its ZnO/TiO2 nanocomposites. Res Rev J Pure Appl Phys. 2014;2:17–21.

    Google Scholar 

  35. Shiomi T, Tsukada H, Takeshita H, Takenaka K, Tezuka Y. Crystallization of semi-crystalline block copolymers containing a glassy amorphous component. Polymer. 2001;42:4997–5004.

    Article  CAS  Google Scholar 

  36. Guan G, Li C, Yuan X, Xiao Y, Liu X, Zhang D. New insight into the crystallization behavior of poly(ethylene terephthalate)/clay nanocomposites. J Polym Sci, Part B: Polym Phys. 2008;46:2380–94.

    Article  CAS  Google Scholar 

  37. Mote VD, Purushotham Y, Dole BN. Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys. 2012;6:6.

    Article  Google Scholar 

  38. Zak AK, et al. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size-strain plot methods. Solid State Sci. 2013;13:251–6.

    Google Scholar 

  39. Li Z. A program for SAXS data processing and analysis. Chin Phys C. 2013;37:108002.

    Article  CAS  Google Scholar 

  40. Goderis B, Reynaers H, Koch MHJ, Mathot VBF. Use of SAXS and linear correlation functions for the determination of the crystallinity and morphology of semi-crystalline polymers. Application to linear polyethylene. J Polym Sci, Part B: Polym Phys. 1999;37:1715–38.

    Article  CAS  Google Scholar 

  41. Brown DS, Fulcher KU, Wetton RE. Application of small angle X-ray scattering to semi- crystalline polymers: 1. Experimental considerations and analysis of data. Polymer. 1973;14:379–83.

    Article  CAS  Google Scholar 

  42. Fischer S, Jiang Z, Men Y. Analysis of the lamellar structure of semi-crystalline polymers by direct model fitting of SAXS patterns. J Phys Chem B. 2011;115:13803–8.

    Article  CAS  PubMed  Google Scholar 

  43. Richardson PH, Richards RW, Blundell DJ, MacDonald WA, Mills P. Differential scanning calorimetry and optical microscopy investigations of the isothermal crystallization of a poly(ethylene oxide)-poly(methyl methacrylate) block copolymer. Polymer. 1995;36:3059–69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sarathchandran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarathchandran, C., Ziang, L., Shanks, R.A. et al. Crystallization kinetics, morphology and spherulite growth in poly(trimethylene terephthalate) modified with bisphenol-A diglycidyl ether. J Therm Anal Calorim 141, 727–737 (2020). https://doi.org/10.1007/s10973-019-09047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09047-1

Keywords

Navigation