Skip to main content
Log in

Physicochemical properties of ether-functionalized ionic liquids [CnOC2mim][Gly] (n = 1–5)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel ionic liquid 1-ethoxyethyl-3-methylimidazolium glycine ([C2OC2mim][Gly]) was prepared and characterized by 1H NMR spectroscopy, 13C NMR spectroscopy, elemental analysis and thermogravimetric analysis. The density, surface tension and refractive index of [C2OC2mim][Gly] were measured in T = (288.15–328.15) K using the standard addition method. Based on experimental data, physicochemical properties molar volume, parachor, surface tension, the molar surface Gibbs energy, the molar vaporization enthalpy, thermal expansion coefficients, molar refraction and refractive index of the homologues [CnOC2mim][Gly] (n = 1–5) were predicted using semiempirical methods. The predicted values were in good agreement within an order of magnitude with the experimental ones.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meindersma GW, Sanchez LMG, Hansmeier AR, Haan AB. Application of task-specific ionic liquids for intensified separations. Monatsh Chem. 2007;138:1125–36.

    Article  Google Scholar 

  2. Tang SK, Baker GA, Zhao H. Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem Soc Rev. 2012;41:4030–66.

    Article  CAS  Google Scholar 

  3. Chen ZJ, Xue T, Lee JM. What causes the low viscosity of ether-functionalized ionic liquids? Its dependence on the increase of free volume. RSC Adv. 2012;2:10564–74.

    Article  CAS  Google Scholar 

  4. De Vos N, Maton C, Stevens CV. Electrochemical stability of ionic liquids: general influences and degradation mechanisms. Chem Electro Chem. 2014;1:1258–70.

    Google Scholar 

  5. Bonhoˆte AP, Dias N, Papageorgiou K, Kalyanasundaram M. Highly conductive ambient-temperature molten salts. Inorg Chem. 1996;35:1168–78.

    Article  Google Scholar 

  6. Zhao H, Baker GA, Song ZY, Olubajo O, Crittle T, Peters D. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem. 2008;10:696–705.

    Article  CAS  Google Scholar 

  7. Branco J, Rosa J, Ramos CAM. Preparation and characterization of new room temperature ionic liquids. Chem Eur J. 2002;8:3671–7.

    Article  CAS  Google Scholar 

  8. Kanakubo M, Makino T, Taniguchi T, Nokami T. CO2 solubility in ether functionalized ionic liquids on mole fraction and molarity scales. ACS Sustain Chem Eng. 2015;4:525–35.

    Article  Google Scholar 

  9. Zhao Y, Wang J, Jiang H, Hu Y. Desulfurization performance of ether-functionalized imidazolium-based ionic liquids supported on porous silica gel. Energy Fuels. 2015;29:1941–5.

    Article  CAS  Google Scholar 

  10. Wang Z, Pei Y, Zhao J, Li Z, Chen Y, Zhuo K. Formation of ether-functionalized ionic-liquid-based aqueous two-phase systems and their application in separation of protein and saccharides. J Phys Chem B. 2015;119:4471–8.

    Article  CAS  Google Scholar 

  11. Rennie AJ, Sanchez-Ramirez ND, Torresi RM, Hall PJ. Ether-bond-containing ionic liquids as supercapacitor electrolytes. J Phys Chem Lett. 2013;4:2970–4.

    Article  CAS  Google Scholar 

  12. Lavall RL, Ferrari S, Tomasi C, Marzantowicz M, Quartarone E, Magistris A, Mustarelli P, Lazzaroni S, Fagnoni M. Novel polymer electrolytes based on thermoplastic polyurethane and ionic liquid/lithium bis(trifluoromethanesulfonyl)imide/propylene carbonate salt system. J Power Sour. 2010;195:5761–7.

    Article  CAS  Google Scholar 

  13. Kar M, Winther-Jensen B, Armand M, Simons TJ, Winther-Jensen O, Forsyth M, MacFarlane DR. Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytes. Electrochim Acta. 2016;188:461–71.

    Article  CAS  Google Scholar 

  14. Akiko T, Hiroyuki O, Stefania P, Maria AN. Novel bis(fluorosulfonyl)imide-based and ether-functionalized ionic liquids for lithium batteries with improved cycling properties. Electrochim Acta. 2019;293:160.

    Article  Google Scholar 

  15. Bittencourt SS, Hoga HE, Torres RB, Hallak d’Angelo JV. Thermodynamic properties of binary mixtures of n-butylammoniumbased ionic liquids with ethanol at T = (293.15–313.15) K. J Therm Anal Calorim. 2019;135:2519–39.

    Article  CAS  Google Scholar 

  16. Zhou LY, Shang XM, Fan J, Wang JJ. Solubility and selectivity of CO2 in ether-functionalized imidazolium ionic liquids. J Chem Thermodyn. 2016;103:292–8.

    Article  CAS  Google Scholar 

  17. Xiao Y, Lu HF, Yi X, Deng J, Shu CM. Treating bituminous coal with ionic liquids to inhibit coal spontaneous combustion. J Therm Anal Calorim. 2019;135:2711–21.

    Article  CAS  Google Scholar 

  18. Zheng L, Bu XX, Fan BH, Wei J, Xing NN, Guan W. Study on thermodynamic property for ionic liquid[C4mim][Lact](1-butyl-3-methylimidazolium lactic acid). J Therm Anal Calorim. 2016;123:1619–25.

    Article  CAS  Google Scholar 

  19. Tong J, Song B, Wang CX, Li L, Guan W, Fang DW, Yang JZ. Prediction of the physicochemical properties of valine ionic liquids [Cnmim][Val] (n = 2,3,4,5,6) by semiempirical methods. Ind Eng Chem Res. 2011;50:2418–23.

    Article  CAS  Google Scholar 

  20. Tong J, Hong M, Liu C, Sun A, Guan W, Yang JZ. Estimation of properties of ionic liquids 1-alkyl-3-methylimidazolium lactate using a semiempirical method. Ind Eng Chem Res. 2013;52:4967–72.

    Article  CAS  Google Scholar 

  21. Tong J, Liu L, Zhang D, Zheng X, Chen X, Yang JZ. Parameters of the activation of viscous flow of aqueous [C2mim] [Ala]. Acta Phys Chim Sin. 2017;33:513–9.

    CAS  Google Scholar 

  22. Zhang D, Qu Y, Gong YY, Tong J, Fang DW. Physicochemical properties of [cnmim][thr] (n = 3, 5, 6) amino acid ionic liquids. J Chem Thermodyn. 2017;115:47–51.

    Article  CAS  Google Scholar 

  23. Liu QB, Michiel HA, Janssen FR, Roger AS. Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem. 2005;7:39–42.

    Article  CAS  Google Scholar 

  24. Tong J, Hong M, Chen Y, Wang H, Guan W, Yang JZ. The surface tension, density and refractive index of amino acid ionic liquids: [C3mim][Gly] and [C4mim][Gly]. J Chem Thermodyn. 2012;54:352–7.

    Article  CAS  Google Scholar 

  25. Lide DR. Handbook of chemistry and physics. 82nd ed. Boca Raton: CRC Press; 2001.

    Google Scholar 

  26. Wei J, Dong HX, Chen X, Yang YX, Fang DW, Guan W. Physicochemical properties of 1-methoxyethyl-3-methylimidazolium glycine. Acta Phys Chim Sin. 2018;34:927–32.

    CAS  Google Scholar 

  27. Glasser L. Lattice and phase transition thermodynamics of ionic liquids. Thermochim Acta. 2004;421:87–93.

    Article  CAS  Google Scholar 

  28. Jenkins H, Glasse L. Standard absolute entropy, S°298, values from volume or density 1 inorganic materials. Inorg Chem. 2003;42:8702–8.

    Article  CAS  Google Scholar 

  29. Deetlefs M, Seddon KR, Shara M. Predicting physical properties of ionic liquids. Phys Chem Chem Phys. 2006;8:642–9.

    Article  CAS  Google Scholar 

  30. Fang DW, Guan W, Tong J, Wang ZW, Yang JZ. Study on physicochemical properties of ionic liquids based on alanine [Cnmim][Ala] (n = 2,3,4,5,6). J Phys Chem B. 2008;112:7499–505.

    Article  CAS  Google Scholar 

  31. Zhang D, Qu Y, Fang DW, Tong J. Corrigendum to “The molar surface Gibbs energy and its application 2: ionic liquids 1-alkyl-3-methylimidazolium threonine salts [Cnmim][Thr] (n = 2, 4) at T = (288.15–328.15) K”. J Chem Thermodyn. 2017;112:103–4.

    Article  CAS  Google Scholar 

  32. Zaitsau DH, Kabo GJ, Strechan AA, Paulechka YU, Tschersich A, Verevkin SP, Heintz A. Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem A. 2006;110:7303–6.

    Article  CAS  Google Scholar 

  33. Yang JZ, Lu XM, Gui JS, Xu WG. A new theory for ionic liquids—the interstice model. Green Chem. 2004;6:541–3.

    Article  CAS  Google Scholar 

  34. Ersfeld B, Felderhof BU. Retardation correction to the Lorentz–Lorenz formula for the refractive index of a disordered system of polarizable point dipoles. Phys Rev. 1998;57:1118–26.

    CAS  Google Scholar 

  35. Fang DW, Ph. D. dissertation, Chinese Academy of Sciences, Xining Province, PR China 2008.

Download references

Acknowledgements

This project is supported by NSFC (21773100) and “Liaoning BaiQianWan Talents Program.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Tong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhang, SS., Hong, M. et al. Physicochemical properties of ether-functionalized ionic liquids [CnOC2mim][Gly] (n = 1–5). J Therm Anal Calorim 140, 2757–2764 (2020). https://doi.org/10.1007/s10973-019-09041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09041-7

Keywords

Navigation