Thermal performances of saturated porous soil during freezing process using lattice Boltzmann method

Abstract

A stochastic growth method for generating the porous soil structure is proposed, and an enthalpy-based lattice Boltzmann phase transition model is introduced. Thermal performance of phase transition in saturated porous soil during freezing is investigated. The effects of thermal diffusivity ratio of porous medium to fluid, difference in specific heat capacity between liquid and solid phase, and porosity of porous medium are investigated. The results show that higher thermal diffusivity ratio will promote the low-temperature propagation and phase interface movement while higher specific heat capacity difference and porosity will hinder the temperature propagation and phase transition from liquid to solid. The solid–liquid interface moves from 39 to 51 mm with the ratio increasing from 2 to 5; the interface position decreases from 51 to 26 mm with the difference increasing from 2000 to 26,000; the interface moves from 59 to 47 mm when the porosity increases from 0.2 to 0.8.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

c s :

Sound speed

C p :

Specific heat (J kg−1 K−1)

e :

Discrete velocity

f :

Density distribution function

f flu :

Fluid volume fraction in calculation unit

f :

Body force per unit mass

F :

Force (N)

g :

Temperature distribution function

g :

Gravitational acceleration (m s−2)

h :

Enthalpy distribution function

H :

Total enthalpy

ΔH :

Latent heat in calculation unit

L :

Latent heat of the fluid

p :

Pressure (Pa)

q :

Heat source term

R :

Radius

S :

Specific surface area (m−1)

t :

Time (s)

T :

Temperature (°C)

u :

Velocity vector of fluid (m s−1)

β :

Volume expansivity

η :

Thermal diffusivity

λ :

Thermal conductivity (W m−1 K−1)

μ :

Dynamic viscosity (N s m−2)

ν :

Kinetic viscosity

ρ :

Density (kg m−3)

ϕ :

Porosity

τ :

Dimensionless relaxation time

ω :

Mass coefficient

Ω :

Collision term

b:

Boundary

f:

Fluid

l:

Liquid phase

m:

Freezing

s:

Solid phase

0:

Initial state

i :

Lattice velocity direction

eq:

Equilibrium state

ref:

Reference

liq:

Liquidus

pm:

Porous medium

sol:

Solidus

References

  1. 1.

    Ingham DB, Pop I. Transport phenomena in porous media III. Amsterdam: Elsevier; 2005.

    Google Scholar 

  2. 2.

    Peter V. Emerging topics in heat and mass transfer in porous media: from bioengineering and microelectronics to nanotechnology. Berlin: Springer; 2008.

    Google Scholar 

  3. 3.

    Li S, Xu F. Numerical simulation of seepage and heat transfer in saturated soils based on lattice boltzmann method. J Therm Sci Technol. 2015;14(6):445–55.

    Google Scholar 

  4. 4.

    Wang M, Wang J, Pan N, Chen S. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys Rev E. 2007;75(3):036702.

    Article  Google Scholar 

  5. 5.

    Song W, Zhang Y, Li B, Fan X. A lattice Boltzmann model for heat and mass transfer phenomena with phase transformations in unsaturated soil during freezing process. Int J Heat Mass Transf. 2016;94:29–38.

    Article  Google Scholar 

  6. 6.

    Hong K, Gao Y, Ullah A, Xu F, Xiong Q, Lorenzini G. Multi-scale CFD modeling of gas-solid bubbling fluidization accounting for sub-grid information. Adv Powder Technol. 2018;29(3):488–98.

    Article  Google Scholar 

  7. 7.

    Xiong Q, Yang Y, Xu F, Pan Y, Zhang J, Hong K, Lorenzini G, Wang S. Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis. ACS Sustain Chem Eng. 2017;5(4):2783–98.

    CAS  Article  Google Scholar 

  8. 8.

    Xiong Q, Aramideh S, Passalacqua A, Kong S. Characterizing effects of the shape of screw conveyors in gas–solid fluidized beds using advanced numerical models. J Heat Transf. 2015;137(6):061008.

    Article  Google Scholar 

  9. 9.

    Xiong Q, Xu F, Ramirez E, Pannala S, Daw CS. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis. Fuel. 2016;164:11–7.

    CAS  Article  Google Scholar 

  10. 10.

    Uriel F, Hasslacher B, Yves P. Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett. 1986;56(14):1505–8.

    Article  Google Scholar 

  11. 11.

    Kang QJ, Lichtner PC, Zhang DX. Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media. J Geophys Res Solid Earth. 2006; 111(B5).

  12. 12.

    Xiong Q, Kong SC. High-resolution particle-scale simulation of biomass pyrolysis. ACS Sustain Chem Eng. 2016;4(10):5456–61.

    CAS  Article  Google Scholar 

  13. 13.

    Xu F, Zhang Y, Jin G, Li B, Kim YS, Xie G, Fu Z. Three phase heat and mass transfer model for unsaturated soil freezing process: part 1—model development. Open Phys. 2018;16(1):75–83.

    CAS  Article  Google Scholar 

  14. 14.

    Zhang Y, Xu F, Li B, Kim Y, Zhao W, Xie G, Fu Z. Three phase heat and mass transfer model for unsaturated soil freezing process: part 2—model validation. Open Phys. 2018;16(1):84–92.

    CAS  Article  Google Scholar 

  15. 15.

    Huber C, Bachmann O, Manga M. Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet Sci Lett. 2009;283(1–4):38–47.

    CAS  Article  Google Scholar 

  16. 16.

    Huang RZ, Wu HY, Cheng P. A new lattice Boltzmann model for solid-liquid phase change. Int J Heat Mass Transf. 2013;59:295–301.

    Article  Google Scholar 

  17. 17.

    Li D, Ren QL, Tong ZX, He YL. Lattice Boltzmann models for axisymmetric solid-liquid phase change. Int J Heat Mass Transf. 2017;112:795–804.

    Article  Google Scholar 

  18. 18.

    Lin Q, Wang SG, Ma ZJ, Wang JH, Zhang TF. Lattice Boltzmann simulation of flow and heat transfer evolution inside encapsulated phase change materials due to natural convection melting. Chem Eng Sci. 2018;189:154–64.

    CAS  Article  Google Scholar 

  19. 19.

    Chakraborty S, Chatterjee D. An enthalpy-based hybrid lattice-Boltzmann method for modelling solid-liquid phase transition in the presence of convective transport. J Fluid Mech. 2007;592:155–75.

    CAS  Article  Google Scholar 

  20. 20.

    Huber C, Parmigiani A, Chopard B, Manga M, Bachmann O. Lattice Boltzmann model for melting with natural convection. Int J Heat Fluid Flow. 2008;29(5):1469–80.

    CAS  Article  Google Scholar 

  21. 21.

    Jany P, Bejan A. Scaling theory of melting with natural convection in an enclosure. Int J Heat Mass Transf. 1988;31(6):1221–35.

    CAS  Article  Google Scholar 

  22. 22.

    Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E. 1993;47(3):1815–9.

    CAS  Article  Google Scholar 

  23. 23.

    Shan X, Chen H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys Rev E. 1994;49(4):2941–8.

    CAS  Article  Google Scholar 

  24. 24.

    Shan X, Doolen G. Multicomponent lattice-Boltzmann model with interparticle interaction. J Stat Phys. 1995;81(1–2):379–93.

    Article  Google Scholar 

  25. 25.

    Shan X, Doolen G. Diffusion in a multicomponent lattice Boltzmann equation model. Phys Rev E. 1996;54(4):3614–20.

    CAS  Article  Google Scholar 

  26. 26.

    Gross EP, Krook M. Model for collision processes in gases: small-amplitude oscillations of charged two-component systems. Phys Rev. 1956;102(102):593–604.

    CAS  Article  Google Scholar 

  27. 27.

    He XY, Luo LS. Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E. 1997;56(6):6811–7.

    CAS  Article  Google Scholar 

  28. 28.

    Luo LS. Unified theory of lattice boltzmann models for nonideal gases. Phys Rev Lett. 1998;81(8):1618–21.

    CAS  Article  Google Scholar 

  29. 29.

    Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E. 2002;65(4):046308.

    Article  Google Scholar 

  30. 30.

    Solomon A. Some remarks on the Stefan problem. Math Comput. 1966;20(95):347–60.

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by Natural Science Foundation of China (Grant No. 51776049) and Special Foundation for Major Program of Civil Aviation Administration of China (Grant No. MB20140066).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yaning Zhang or Bingxi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zuo, D., Zhang, Y. et al. Thermal performances of saturated porous soil during freezing process using lattice Boltzmann method. J Therm Anal Calorim 141, 1529–1541 (2020). https://doi.org/10.1007/s10973-019-09035-5

Download citation

Keywords

  • Stochastic growth method
  • Lattice Boltzmann method
  • Thermal diffusivity
  • Specific heat capacity
  • Porosity