Skip to main content
Log in

Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents a novel study on the performance of closed-loop oscillating heat pipe (CLOHP) using iron oxide (Fe3O4) as the working fluid for three types of condensers. The tested CLOHP consists of six turns made of copper tubes, 4.5 mm outer diameter and 3 mm inner diameter with heating power input in a range of 0–200 W. The experimental results showed that the thermal performance of the CLOHPs has been improved when the corrugated horizontal condenser was used compare to straight and corrugated vertical condensers. Based on 800 sets of available experimental data, the results show that the CLOHPs with corrugated horizontal condenser had better thermal performance when charged with Fe3O4/water at 2% mass concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Area (m2)

D :

Diameter (mm)

I :

Electric current (A)

V :

Electrical voltage (V)

q″:

Heat flux (W m−2 K−1)

q :

Heating power (W)

h :

Heat transfer coefficient (W m−2 K−1)

L :

Length (m)

T :

Temperature (K)

R :

Thermal resistance (KW-1)

ŋ :

Efficiency (%)

Δ :

Uncertainty

ρ :

Density (kg m−3)

ad:

Adiabatic

c:

Condenser

e:

Evaporator

i:

Inner

in:

Input

out:

Output

sat:

Saturation

References

  1. Akachi H, Polášek F, Štulc P. Pulsating heat pipes. In: Proceeding of the 5th international heat pipe symposium, Melbourne, Australia. 1996; pp. 208–217.

  2. Sun Q, Qu J, Li X, Yuan J. Experimental investigation of thermo-hydrodynamic behavior in a closed loop oscillating heat pipe. Exp Therm Fluid Sci. 2017;82:450–8.

    CAS  Google Scholar 

  3. Taft BS, Rhodes M. Experimental investigation of oscillating heat pipes under direct current and pulse width modulation heating input conditions. Appl Therm Eng. 2017;126:1018–22.

    CAS  Google Scholar 

  4. Qu J, Li X, Cui Y, Wang Q. Design and experimental study on a hybrid flexible oscillating heat pipe. Int J Heat Mass Transf. 2017;107:640–5.

    CAS  Google Scholar 

  5. Zhao J, Qu J, Rao Z. Experiment investigation on thermal performance of a large-scale oscillating heat pipe with self-rewetting fluid used for thermal energy storage. Int J Heat Mass Transf. 2017;108:760–9.

    CAS  Google Scholar 

  6. Yin D, Wang H, Ma HB, Ji YL. Operation limitation of an oscillating heat pipe. Int J Heat Mass Transf. 2016;94:366–72.

    Google Scholar 

  7. Hao T, Ma X, Lan Z, Zhao Y, Ma H. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe. Int J Heat Mass Transf. 2014;72:50–65.

    CAS  Google Scholar 

  8. Mameli M, Marengo M, Zinna S. Numerical model of a multi-turn closed loop pulsating heat pipe: effects of the local pressure losses due to meanderings. Int J Heat Mass Transf. 2012;55:1036–47.

    CAS  Google Scholar 

  9. Shi W, Pan L. Influence of filling ratio and working fluid thermal properties on starting up and heat transferring performance of closed loop plate oscillating heat pipe with parallel channels. J Therm Sci. 2017;26:73–81.

    CAS  Google Scholar 

  10. Patel VM, Gaurav H, Mehta HB. Influence of working fluids on start-up mechanism and thermal performance of a closed loop pulsating heat pipe. Appl Therm Eng. 2017;110:1568–77.

    CAS  Google Scholar 

  11. Tong BY, Wong TN, Ooi KT. Closed-loop pulsating heat pipe. Appl Therm Eng. 2001;21:1845–62.

    CAS  Google Scholar 

  12. Ma HB, Qu W. Theoretical analysis of startup of a pulsating heat pipe. Int J Heat Mass Transf. 2006;50:2309–16.

    Google Scholar 

  13. Ma HB, Yin D, Rajab H. Theoretical analysis of maximum filling ratio in an oscillating heat pipe. Int J Heat Mass Transf. 2014;74:353–7.

    Google Scholar 

  14. Ma H, Peng H, Pai PF. Nonlinear thermomechanical finite-element modeling, analysis and characterization of multi-turn oscillating heat pipes. Int J Heat Mass Transf. 2014;69:424–37.

    Google Scholar 

  15. Han H, Cui X, Zhu Y, Xu T, Sui Y, Sun S. Experimental study on a closed-loop pulsating heat pipe (CLPHP) charged with water-based binary zoetrope and the corresponding pure fluids. Energy. 2016;109:724–36.

    CAS  Google Scholar 

  16. Xu JL, Li YX, Wong TN. High speed flow visualization of a closed loop pulsating heat pipe. Int J Heat Mass Transf. 2005;48:3338–51.

    CAS  Google Scholar 

  17. Mohammadi M, Taslimifar M, Saidi MH, Shafii MB, Afshin H, Hannani SK. Ferrofluidic open loop pulsating heat pipes: efficient candidates for thermal management of electronics. Exp Heat Transf. 2014;27:296–312.

    CAS  Google Scholar 

  18. Daimaru T, Nagai H. Operational characteristics of the oscillating heat pipe with noncondensable gas. J Thermophys Heat Transf. 2015;29(3):563–71.

    CAS  Google Scholar 

  19. Haghayegh S, Mohammadi M, Taslimifar M, Hannani SK, Shafii MB, Saidi MH, Afshin H. Open-loop pulsating heat pipes charged with magnetic nanofluids: powerful candidates for future electronic coolers. Nanoscale Microscale Thermophys Eng. 2014;18:18–38.

    Google Scholar 

  20. Senjaya R, Inoue T. Oscillating heat pipe simulation considering bubble generation part I: presentation of the model and effects of a bubble generation. Int J Heat Mass Transf. 2013;60:816–24.

    Google Scholar 

  21. Shafii MB, Ahmadi H, Faegh M. Experimental investigation of a novel magnetically variable conductance thermosiphon heat pipe. Appl Therm Eng. 2017;126:1–8.

    Google Scholar 

  22. Ebrahimi M, Shafii MB, Bijarchi MA. Experimental investigation of the thermal management of flat-plate closed-loop pulsating heat pipes with interconnecting channels. Appl Therm Eng. 2015;90:838–47.

    CAS  Google Scholar 

  23. Mosleh HJ, Bijarchi MA, Shafii MB. Experimental and numerical investigation of using pulsating heat pipes instead of fins in air-cooled heat exchangers. Energy Convers Manag. 2019;181:653–62.

    Google Scholar 

  24. Sedighi E, Amarloo A, Shafii MB. Experimental investigation of the thermal characteristics of single-turn pulsating heat pipes with an extra branch. Int J Therm Sci. 2018;134:258–68.

    CAS  Google Scholar 

  25. Jie Q, Jiateng Z, Zhonghao R. Experimental investigation on the thermal performance of three dimensional oscillating heat pipe. Int J Heat Mass Transf. 2017;109:589–600.

    Google Scholar 

  26. Wang J, Li G, Zhu H, Luo J, Sundén B. Experimental investigation on convective heat transfer of ferrofluids inside a pipe under various magnet orientations. Int J Heat Mass Transf. 2019;132:407–19.

    CAS  Google Scholar 

  27. Ji Y, Liu G, Ma H, Li G, Sun Y. An experimental investigation of heat transfer performance in a polydimethylsiloxane (PDMS) oscillating heat pipe. Appl Therm Eng. 2013;61:690–7.

    CAS  Google Scholar 

  28. Mehrali M, Sadeghinezhad E, Azizian R, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Convers Manag. 2016;118:459–73.

    CAS  Google Scholar 

  29. Sadeghinezhad E, Mehrali M, Rosen MA, Akhiani AR, Latibari ST, Mehrali M, Metselaar HC. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Appl Therm Eng. 2016;100:775–87.

    CAS  Google Scholar 

  30. Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp Therm Fluid Sci. 2016;74:265–70.

    CAS  Google Scholar 

  31. Yousefi T, Mousavi S, Farahbakhsh B, Saghir M. Experimental investigation on the performance of CPU coolers: effect of heat pipe inclination angle and the use of nanofluids. Microelectron Reliab. 2013;53:1954–61.

    CAS  Google Scholar 

  32. Yanxi S, Jinliang X. Chaotic behavior of pulsating heat pipes. Int J Heat Mass Transf. 2009;52:2932–41.

    Google Scholar 

  33. Taslimifar M, Mohammadi M, Afshin H, Saidi MH, Shafii MB. Overall thermal performance of ferrofluidic open loop pulsating heat pipes: an experimental approach. Int J Therm Sci. 2013;65:234–41.

    CAS  Google Scholar 

  34. Malvandi A, Moshizi S, Ganji D. Effect of magnetic fields on heat convection inside a concentric annulus filled with Al2O3–water nanofluid. Adv Powder Technol. 2014;25:1817–24.

    CAS  Google Scholar 

  35. Zarei Saleh Abad M, Ebrahimi-Dehshali M, Bijarchi MA, Shafii MB, Moosavi A. Visualization of pool boiling heat transfer of magnetic nanofluid. Heat Transf Asian Res. 2019. https://doi.org/10.1002/htj.21498.

    Article  Google Scholar 

  36. Reay DA, Kew PA, McGlen RJ. Chapter 6—special types of heat pipe, heat pipes: theory, design and applications. Oxford: Butterworth-Heinemann; 2014. p. 135–73.

    Google Scholar 

  37. Sedighi E, Amarloo A, Shafii B. Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section. Int J Heat Mass Transf. 2018;126:431–41.

    Google Scholar 

  38. Yang H, Khandekar S, Groll M. Performance characteristics of pulsating heat pipes as integral thermal spreaders. Int J Therm Sci. 2009;48:815–24.

    CAS  Google Scholar 

  39. Li Y, Wang Q, Chen S, Zhao B, Dai Y. Experimental investigation of the characteristics of cryogenic oscillating heat pipe. Int J Heat Mass Transf. 2014;79:713–9.

    Google Scholar 

  40. Bandarra Filho EP, Mendoza OSH, Beicker CLL, Menezes A, Wen AD. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Convers Manag. 2014;84:261–7.

    CAS  Google Scholar 

  41. Hao T, Ma H, Ma X. Heat transfer performance of polytetrafluoroethylene oscillating heat, pipe with water, ethanol, and acetone as working fluids. Int J Heat Mass Transf. 2019;131:109–20.

    CAS  Google Scholar 

  42. Chiang YC, Kuo WC, Ho CC, Chieh JJ. Experimental study on thermal performances of heat pipes for air-conditioning systems influenced by magnetic nanofluids, external fields and micro wicks. Int J Refrig. 2014;43:62–70.

    Google Scholar 

  43. Xian H, Xu W, Zhang Y, Du X, Yang Y. Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating. Int J Heat Mass Transf. 2014;79:332–41.

    Google Scholar 

  44. Goshayeshi HR, Safaei MR, Goodarzi M, Dahari M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. J Powder Technol. 2016;301:1218–26.

    CAS  Google Scholar 

  45. Goshayeshi HR, Izadi F, Bashirnezhad K. Comparison of heat transfer performance on closed pulsating heat pipe for Fe3O4 and γFe2O3 for achieving an empirical correlation. Phys E Low-dimens Syst Nanostruct. 2017;89:43–9.

    CAS  Google Scholar 

  46. Syam Sunder L, Singh MK, Sousa A. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer application. Int Commun Heat Mass Transf. 2013;44:7–14.

    Google Scholar 

  47. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.

    Google Scholar 

  48. Holman J. Heat transfer. 8th ed. New York: McGraw-Hill Inc; 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Goshayeshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davari, H., Goshayeshi, H.R., Öztop, H.F. et al. Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid. J Therm Anal Calorim 140, 2605–2614 (2020). https://doi.org/10.1007/s10973-019-09032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09032-8

Keywords

Navigation