Skip to main content
Log in

Chemical reactive flow of Jeffrey fluid due to a rotating disk with non-Fourier heat flux theory

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present paper explores non-Fourier heat flux theory for Jeffrey fluid flow subject to a rotating disk. The current analysis is executed in the presence of homogeneous–heterogeneous reactions. Relevant system of equations is constructed and appropriate transformations lead to self-similar forms. Convergent series solutions are computed for the resulting nonlinear differential system by homotopy analysis method. Graphical illustrations thoroughly demonstrate the features of involved pertinent parameters. Skin friction coefficients are also obtained and discussed graphically. Current computations reveal that the radial velocity experience declines with the decay of Deborah number. Further, fluid temperature declines for higher Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

u :

Radial velocity component

v :

Transverse velocity component

w :

Axial velocity component

r :

Radial coordinate

θ :

Azimuthal coordinate

z :

Axial coordinate

\(\Omega \) :

Angular velocity

\(T_{\mathrm{w }}\) :

Disk surface temperature

\(T_{\infty }\) :

Ambient fluid temperature

A, B :

Chemical species

a, b :

Chemical species concentration

\(k_{\mathrm{c }},k_{\mathrm{s }}\) :

Rate constants

\(\lambda _{1}\) :

Retardation time

α :

Ratio of relaxation to retardation time

\(\rho \) :

Density

\(c_{\mathrm{p }}\) :

Specific heat

\({\mathbf {q}}\) :

Heat flux

\(D_{\mathrm{A }}\), \(D_{\mathrm{B }}\) :

Diffusion coefficients

T :

Temperature

k :

Thermal conductivity

\(\lambda _{2}\) :

Relaxation time

Pr:

Prandtl number

β :

Deborah number

\(\gamma \) :

Thermal relaxation time

\(\delta \) :

Ratio of diffusion coefficients

Sc:

Schmidt number

\(k_{1}\) :

Strength of homogeneous reaction parameter

\(k_{2}\) :

Strength of heterogeneous reaction parameter

\(\mu \) :

Dynamic viscosity

\(\tau _{\mathrm{rz }}\) :

Surface radial stress

\(\tau _{\uptheta \mathrm{z}}\) :

Surface tangential stress

\(\mathop {\mathrm{Re}}\nolimits \) :

Reynolds number

References

  1. Hayat T, Sajjad R, Asghar S. Series solution for MHD channel flow of a Jeffrey fluid. Commun Nonlinear Sci Numer Simul. 2010;15:2400–6.

    Google Scholar 

  2. Vajravelu K, Sreenadh S, Lakshminarayana P. The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum. Commun Nonlinear Sci Numer Simul. 2011;16:3107–25.

    Google Scholar 

  3. Hamad MAA, Gaied SMA, Khan WA. Thermal jump effects on boundary layer flow of a Jeffrey fluid near the stagnation point on a stretching/shrinking sheet with variable thermal conductivity. J Fluids. 2013;2013:749271.

    Google Scholar 

  4. Turkyilmazoglu M, Pop I. Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. Int J Heat Mass Transf. 2013;57:82–8.

    Google Scholar 

  5. Ellahi R, Rahman SU, Nadeem S. Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles. Phys Lett A. 2014;378(40):2973–80.

    CAS  Google Scholar 

  6. Reddy GB, Sreenadh S, Reddy RH, Kavitha A. Flow of a Jeffrey fluid between torsionally oscillating disks. Ain Shams Eng J. 2015;6:355–62.

    Google Scholar 

  7. Rahman SU, Ellahi R, Nadeem S, Zia QMZ. Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. J Mol Liq. 2016;218:484–93.

    CAS  Google Scholar 

  8. Hayat T, Imtiaz M, Alsaedi A. Magnetohydrodynamic stagnation point flow of a Jeffrey nanofluid with Newtonian heating. J Aerosp Eng. 2016;29:04015063.

    Google Scholar 

  9. Bhatti MM, Ellahi R, Zeeshan A. Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls. J Mol Liq. 2016;222:101–8.

    CAS  Google Scholar 

  10. Fourier JBJ. Theorie Analytique Da La Chaleur, Paris; 1822.

  11. Cattaneo C. Sulla conduzionedelcalore. Atti Semin Mat Fis Univ Modena Reggio Emilia. 1948;3:83–101.

    Google Scholar 

  12. Christov CI. On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun. 2009;36:481–6.

    Google Scholar 

  13. Straughan B. Thermal convection with the Cattaneo–Christov model. Int J Heat Mass Transf. 2010;53:95–8.

    Google Scholar 

  14. Han S, Zheng L, Li C, Zhang X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl Math Lett. 2014;38:87–93.

    Google Scholar 

  15. Mustafa M. Cattaneo–Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. AIP Adv. 2015;5:047109.

    Google Scholar 

  16. Hayat T, Qayyum S, Imtiaz M, Alsaedi A. Three-dimensional rotating flow of Jeffrey fluid for Cattaneo–Christov heat flux model. AIP Adv. 2016;6:025012.

    Google Scholar 

  17. Alamri SZ, Khan AA, Azeez M, Ellahi R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phys Lett A. 2019;383:276–81.

    CAS  Google Scholar 

  18. Von Kármán T. Über laminare und turbulente Reibung. Z Angew Math Mech ZAMM. 1921;1:233–52.

    Google Scholar 

  19. Cochran WG. The flow due to a rotating disk. Proc Camb Philos Soc. 1934;30:365–75.

    Google Scholar 

  20. Millsaps K, Pohlhausen K. Heat transfer by laminar flow from a rotating disk. J Aeronaut Sci. 1952;19:120–6.

    Google Scholar 

  21. Bachok N, Ishak A, Pop I. Flow and heat transfer over a rotating porous disk in a nanofluid. Phys B. 2001;406:1767–72.

    Google Scholar 

  22. Turkyilmazoglu M, Senel P. Heat and mass transfer of the flow due to a rotating rough and porous disk. Int J Therm Sci. 2013;63:146–58.

    Google Scholar 

  23. Jiji LM, Ganatos P. Microscale flow and heat transfer between rotating disks. Int J Heat Fluid Flow. 2010;31:702–10.

    Google Scholar 

  24. Hayat T, Qayyum S, Imtiaz M, Alzahrani F, Alsaedi A. Partial slip effect in flow of magnetite \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles between rotating stretchable disks. J Magn Magn Mater. 2016;413:39–48.

    CAS  Google Scholar 

  25. Turkyilmazoglu M. MHD fluid flow and heat transfer due to a stretching rotating disk. Int J Therm Sci. 2012;51:195–201.

    Google Scholar 

  26. Khan M, Ahmed J, Ahmad L. Chemically reactive and radiative Von Karman swirling flow due to a rotating disk. Appl Math Mech (Engl Ed). 2018;39:1295–310.

    Google Scholar 

  27. Lin Y, Zheng L, Zhang X, Ma L, Chen G. MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. Int J Heat Mass Transf. 2015;84:903–11.

    CAS  Google Scholar 

  28. Griffiths PT. Flow of a generalised Newtonian fluid due to a rotating disk. J Non-Newtonian Fluid Mech. 2015;221:9–17.

    CAS  Google Scholar 

  29. Ming CY, Zheng LC, Zhang XX. Steady flow and heat transfer of the power-law fluid over a rotating disk. Int Commun Heat Mass Transf. 2011;38:280–4.

    Google Scholar 

  30. Hayat T, Haider F, Muhammad T, Ahmad B. Darcy–Forchheimer flow of carbon nanotubes due to a convectively heated rotating disk with homogeneous–heterogeneous reactions. J Therm Anal Calorim. 2019;137(6):1939–49.

    CAS  Google Scholar 

  31. Merkin JH. A model for isothermal homogeneous–heterogeneous reactions in boundary layer flow. Math Comput Model. 1996;24:125–36.

    Google Scholar 

  32. Chaudhary MA, Merkin JH. A simple isothermal model for homogeneous–heterogeneous reactions in boundary layer flow: I. Equal diffusivities. Fluid Dyn Res. 1995;16:311–33.

    Google Scholar 

  33. Shaw S, Kameswaran PK, Sibanda P. Homogeneous–heterogeneous reactions in micropolar fluid flow from a permeable stretching or shrinking sheet in a porous medium. Bound Value Probl. 2013;2013:77.

    Google Scholar 

  34. Bachok N, Ishak A, Pop I. On the stagnation-point flow towards a stretching sheet with homogeneous–heterogeneous reactions effects. Commun Nonlinear Sci Numer Simul. 2011;16:4296–302.

    Google Scholar 

  35. Hayat T, Aziz A, Muhammad T, Alsaedi A. Significance of homogeneous–heterogeneous reactions in Darcy–Forchheimer three-dimensional rotating flow of carbon nanotubes. J Therm Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-08316-3.

    Article  Google Scholar 

  36. Liao SJ. Homotopy analysis method in non-linear differential equations. Heidelberg: Springer and Higher Education Press; 2012.

    Google Scholar 

  37. Kandelousi MS, Ellahi R. Simulation of ferrofluid flow for magnetic drug targeting using lattice Boltzmann method. J Z Naturforsch A. 2015;70:115–24.

    CAS  Google Scholar 

  38. Sui J, Zheng L, Zhang X, Chen G. Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate. Int J Heat Mass Transf. 2015;85:1023–33.

    Google Scholar 

  39. Hayat T, Imtiaz M, Alsaedi A, Kutbi MA. MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. J Magn Magn Mater. 2015;396:31–7.

    CAS  Google Scholar 

  40. Lin Y, Zheng L, Chen G. Unsteady flow and heat transfer of pseudoplastic nano liquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous dissipation. Powder Technol. 2015;274:324–32.

    CAS  Google Scholar 

  41. Mustafa M. Cattaneo–Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. AIP Adv. 2015;5:047109.

    Google Scholar 

  42. Hayat T, Muhammad T, Qayyum A, Alsaedi A, Mustafa M. On squeezing flow of nanofluid in the presence of magnetic field effects. J Mol Liq. 2016;213:179–85.

    CAS  Google Scholar 

  43. Turkyilmazoglu M. Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian decomposition method. Mediterr J Math. 2016;13:4019–37.

    Google Scholar 

  44. Farooq U, Hayat T, Alsaedi A, Liao SJ. Heat and mass transfer of two-layer flows of third-grade nano-fluids in a vertical channel. Appl Math Comput. 2014;242:528–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Imtiaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imtiaz, M., Shahid, F., Hayat, T. et al. Chemical reactive flow of Jeffrey fluid due to a rotating disk with non-Fourier heat flux theory. J Therm Anal Calorim 140, 2461–2470 (2020). https://doi.org/10.1007/s10973-019-08997-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08997-w

Keywords

Navigation