Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries


Batteries, especially lithium-ion ones, are the main energy sources of electric vehicles. In order to remove the generated heat in these batteries, passive cooling systems such as those employing phase change materials (PCMs) can be used, without any energy consumption. The main drawback of conventional PCMs is their low thermal conductivity, which can be solved by adding conductive additives to pure PCM. In this study, nine passive battery thermal management systems (BTMSs) based on paraffin wax as pure PCM, and copper foam as conductive additive, but with nine different amounts (from 1 to 9 vol%), are numerically simulated to reveal the role of additive content. The results show that the addition of metal foam greatly influences the time evolution of PCM liquid fraction. It is turned out that the addition of 6 vol% copper foam can create the best cooling effect and preserves the cell in the desired temperature range. In fact, adding more than this value can significantly reduce the heat absorption capacity of BTMS and makes the BTMS unreliable.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


C :

Mushy zone parameter

C 2 :

Inertial resistance factor in Eq. (3)

C P :

Heat capacity

H :

Enthalpy per unit of mass

K :


k :

Thermal conductivity

L :

Latent heat for phase change material

\(\dot{m}_{\text{pq}}\) :

Rate of mass transfer from phase p to phase q

\(\dot{m}_{\text{qp}}\) :

Rate of mass transfer from phase q to phase p

P :


S :

Source/sink term

T :


u i :

Component of velocity vector along the ith axis

\(\vec{V}\) :

Velocity vector

\(\alpha\) :

Volume fraction

Γ :

Liquid fraction

Μ :

Dynamic viscosity

\(\rho\) :


\(\varphi\) :









Reference value




  1. 1.

    Javani N, Dincer I, Naterer G, Yilbas B. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. Int J Heat Mass Transf. 2014;72:690–703.

    CAS  Google Scholar 

  2. 2.

    Afzal A, Mohammed Samee AD, Abdul Razak RK, Ramis MK. Effect of spacing on thermal performance characteristics of Li-ion battery cells. J Therm Anal Calorim. 2019;135(3):1797–811.

    CAS  Article  Google Scholar 

  3. 3.

    Vazquez-Arenas J, Gimenez LE, Fowler M, Han T, Chen S-K. A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis. Energy Convers Manag. 2014;87:472–82.

    CAS  Google Scholar 

  4. 4.

    Masih-Tehrani M, Ha’iri-Yazdi M-R, Esfahanian V, Safaei A. Optimum sizing and optimum energy management of a hybrid energy storage system for lithium battery life improvement. J Power Sour. 2013;244:2–10.

    CAS  Google Scholar 

  5. 5.

    Rizk R, Louahlia H, Gualous H, Schaetzel P, Alcicek G. Experimental analysis on Li-ion battery local heat distribution. J Therm Anal Calorim. 2019.

    Article  Google Scholar 

  6. 6.

    Salami Ranjbaran Y, Shoajeefard MH, Molaeimanesh GR. Thermal behavior of a commercial prismatic Lithium-ion battery cell applied in electric vehicles. Int J Automot Eng. 2018;8(2):2700–8.

    Article  Google Scholar 

  7. 7.

    Duh Y-S, Tsai M-T, Kao C-S. Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle. J Therm Anal Calorim. 2017;127(1):983–93.

    CAS  Google Scholar 

  8. 8.

    Chen W-C, Li J-D, Shu C-M, Wang Y-W. Effects of thermal hazard on 18650 lithium-ion battery under different states of charge. J Therm Anal Calorim. 2015;121(1):525–31.

    CAS  Article  Google Scholar 

  9. 9.

    Azizi Y, Sadrameli S. Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates. Energy Convers Manag. 2016;128:294–302.

    CAS  Google Scholar 

  10. 10.

    Wang Z, Ouyang D, Chen M, Wang X, Zhang Z, Wang J. Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes. J Therm Anal Calorim. 2019;136(6):2239–47.

    CAS  Article  Google Scholar 

  11. 11.

    Zhong G, Mao B, Wang C, Jiang L, Xu K, Sun J, et al. Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter. J Therm Anal Calorim. 2019;135(5):2879–89.

    CAS  Article  Google Scholar 

  12. 12.

    Duh Y-S, Tsai M-T, Kao C-S. Thermal runaway on 18650 lithium-ion batteries containing cathode materials with and without the coating of self-terminated oligomers with hyper-branched architecture (STOBA) used in electric vehicles. J Therm Anal Calorim. 2017;129(3):1935–48.

    CAS  Google Scholar 

  13. 13.

    Ling Z, Cao J, Zhang W, Zhang Z, Fang X, Gao X. Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology. Appl Energy. 2018;228:777–88.

    CAS  Google Scholar 

  14. 14.

    Wang C, Zhang G, Meng L, Li X, Situ W, Lv Y, et al. Liquid cooling based on thermal silica plate for battery thermal management system. Int J Energy Res. 2017;41(15):2468–79.

    CAS  Google Scholar 

  15. 15.

    Chen K, Chen Y, Li Z, Yuan F, Wang S. Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system. Int J Heat Mass Transf. 2018;127:393–401.

    Google Scholar 

  16. 16.

    Jenabi Haqparast S, Molaeimanesh GR, Mousavi-Khoshdel SM. Role of phase change materials in creating uniform surface temperature on a lithium battery cell applicable in electric vehicles. Int J Automot Eng. 2018;8(4):2848–53.

    Article  Google Scholar 

  17. 17.

    Shojaeefard M, Molaeimanesh G, Ranjbaran YS. Improving the performance of a passive battery thermal management system based on PCM using lateral fins. Heat Mass Transf. 2019;55(6):1–15.

    Google Scholar 

  18. 18.

    Malik M, Dincer I, Rosen MA. Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles. Int J Energy Res. 2016;40(8):1011–31.

    CAS  Google Scholar 

  19. 19.

    Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renew Sustain Energy Rev. 2007;11(9):1913–65.

    CAS  Google Scholar 

  20. 20.

    Esmaeili J, Jannesari H. Developing heat source term including heat generation at rest condition for Lithium-ion battery pack by up scaling information from cell scale. Energy Convers Manag. 2017;139:194–205.

    Google Scholar 

  21. 21.

    Bareiss M, Beer H. An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. Int J Heat Mass Transf. 1984;27(5):739–46.

    CAS  Google Scholar 

  22. 22.

    Wu W, Zhang G, Ke X, Yang X, Wang Z, Liu C. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management. Energy Convers Manag. 2015;101:278–84.

    CAS  Google Scholar 

  23. 23.

    Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 2007;50(9–10):1790–804.

    Google Scholar 

  24. 24.

    Sparrow E, Broadbent J. Inward melting in a vertical tube which allows free expansion of the phase-change medium. J Heat Transf. 1982;104(2):309–15.

    CAS  Google Scholar 

  25. 25.

    Pal D, Joshi YK. Melting in a side heated tall enclosure by a uniformly dissipating heat source. Int J Heat Mass Transf. 2001;44(2):375–87.

    CAS  Google Scholar 

  26. 26.

    Rao Z, Wang S, Zhang G. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery. Energy Convers Manag. 2011;52(12):3408–14.

    CAS  Google Scholar 

  27. 27.

    Tan F, Hosseinizadeh S, Khodadadi J, Fan L. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf. 2009;52(15–16):3464–72.

    CAS  Google Scholar 

  28. 28.

    Sparrow E, Gurtcheff G, Myrum T. Correlation of melting results for both pure substances and impure substances. J Heat Transf. 1986;108(3):649–53.

    CAS  Google Scholar 

  29. 29.

    Menon A, Weber M, Mujumdar A. The dynamics of energy storage for paraffin wax in cylindrical containers. Can J Chem Eng. 1983;61(5):647–53.

    CAS  Google Scholar 

  30. 30.

    Greco A, Jiang X. A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite. J Power Sour. 2016;315:127–39.

    CAS  Google Scholar 

  31. 31.

    Lin C, Xu S, Chang G, Liu J. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets. J Power Sour. 2015;275:742–9.

    CAS  Google Scholar 

  32. 32.

    Zhang Z, Li Y. Experimental study of a passive thermal management system using copper foam-paraffin composite for lithium ion batteries. Energy Proc. 2017;142:2403–8.

    CAS  Google Scholar 

  33. 33.

    Wang Z, Liu S, Ma G, Xie S, Du G, Sun J, et al. Preparation and properties of caprylic-nonanoic acid mixture/expanded graphite composite as phase change material for thermal energy storage. Int J Energy Res. 2017;41(15):2555–64.

    CAS  Google Scholar 

  34. 34.

    Seki Y, Ince S, Ezan MA, Turgut A, Erek A. Development and evaluation of graphite nanoplate (GNP)-based phase change material for energy storage applications. Int J Energy Res. 2015;39(5):696–708.

    CAS  Google Scholar 

  35. 35.

    Mousavi S, Siavashi M, Heyhat MM. Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins. Num Heat Transf Part A: Appl. 2019;75(8):560–77.

    Google Scholar 

  36. 36.

    Alrashdan A, Mayyas AT, Al-Hallaj S. Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs. J Mater Process Tech. 2010;210(1):174–9.

    CAS  Google Scholar 

  37. 37.

    Greco A, Jiang X, Cao D. An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. J Power Sour. 2015;278:50–68.

    CAS  Google Scholar 

  38. 38.

    Wang X, Xie Y, Day R, Wu H, Hu Z, Zhu J, et al. Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack. Energy. 2018;156:154–68.

    CAS  Google Scholar 

  39. 39.

    Javani N, Dincer I, Naterer G, Rohrauer G. Modeling of passive thermal management for electric vehicle battery packs with PCM between cells. Appl Therm Eng. 2014;73(1):307–16.

    CAS  Google Scholar 

  40. 40.

    Wang Z, Zhang Z, Jia L, Yang L. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery. Appl Therm Eng. 2015;78:428–36.

    CAS  Google Scholar 

  41. 41.

    Chintakrinda K, Weinstein RD, Fleischer AS. A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci. 2011;50(9):1639–47.

    CAS  Google Scholar 

  42. 42.

    Hussain A, Abidi IH, Tso CY, Chan KC, Luo Z, Chao CYH. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. Int J Therm Sci. 2018;124:23–35.

    CAS  Google Scholar 

  43. 43.

    Zou D, Ma X, Liu X, Zheng P, Hu Y. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. Int J Heat Mass Transf. 2018;120:33–41.

    CAS  Google Scholar 

  44. 44.

    Wang H, Wang H, Gao F, Zhou P, Zhai ZJ. Literature review on pressure–velocity decoupling algorithms applied to built-environment CFD simulation. Build Environ. 2018;143:671–8.

    Google Scholar 

  45. 45.

    Wanik A, Schnell U. Some remarks on the PISO and SIMPLE algorithms for steady turbulent flow problems. Comput Fluids. 1989;17(4):555–70.

    CAS  Google Scholar 

  46. 46.

    Shmueli H, Ziskind G, Letan R. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. Int J Heat Mass Transf. 2010;53(19–20):4082–91.

    CAS  Google Scholar 

  47. 47.

    White FM. Fluid Mechanics. New York: McGraw Hill; 2011.

    Google Scholar 

  48. 48.

    Brent A, Voller V, Reid K. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Num Heat Transf Part A Appl. 1988;13(3):297–318.

    Google Scholar 

  49. 49.

    Guo G, He Z, Chen Y, Wang Q, Leng X, Sun S. LES investigations on effects of the residual bubble on the single hole diesel injector jet. Int J Heat Mass Transf. 2017;112:18–27.

    Google Scholar 

  50. 50.

    Çengel YA, Ghajar AJ. Heat and Mass Transfer: Fundamentals & Applications. Stillwater: Grawhil Education; 2015.

  51. 51.

    Katsman L. Investigation of phase change in cylindrical geometry with internal fins. M. Sc. Thesis, Heat Transfer Laboratory, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 2006.

Download references

Author information



Corresponding author

Correspondence to G. R. Molaeimanesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ranjbaran, Y.S., Haghparast, S.J., Shojaeefard, M.H. et al. Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries. J Therm Anal Calorim 141, 1717–1739 (2020).

Download citation


  • Conjugate heat transfer
  • Porous media
  • Battery thermal management system (BTMS)
  • Li-ion battery
  • Phase change materials (PCMs)